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Abstract

We consider an extended formulation of the transport equation that remains meaningful with
discontinuous velocity fields b, assuming that (1, b) is a special function of bounded deformation
(SBD). We study existence, uniqueness, and continuity/stability of the presented formulation. We
then apply this study to the problem of fitting to available data a space-time image subject to
the optical flow constraint. Moreover, in order to carry out these studies, we refine the SBD
approximation theorem of Chambolle to show the convergence of traces.

Resumé

Nous considérons une extension de l’équation de transport qui reste valide avec des champs de
vitesses discontinues b, en supposant que (1, b) est une fonction spécial de déformation bornée (SBD
’special function of bounded deformation’ en anglais). Nous étudions l’existence, l’unicité et de la
continuité/stabilité du modèle présenté. Nous appliquons ensuite ces résultats dans le problème de
l’ajustement d’une image sur l’espace-temps aux données disponibles, sous la contrainte du flux
optique. En outre, a fin de conclure ces études, on perfectionne la théorème d’approximation des
SBD par Chambolle pour montrer la convergence des traces.
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1. Introduction

Our primary objective in this work is to extend the transport equation to model both jump
sources and sinks. We assume that u = (1, b) is a special function of bounded deformation (SBD;
see Temam [1] and Ambrosio et al. [2]), supported on cl((0, T )× Ω) ⊂ Rn+1. We then ask for the
existence of I : (0, T ) × Ω → R and τ : Ju → R, defined on the (Hn-rectifiable) jump set of u,
satisfying the distributional equation

Div(Iu)− I div uLn+1 − τ Divj u = 0 on Rn+1. (1)

Constraints may be placed on the one-sided traces of I on parts of Ju, including an initial condition
at time t = 0. We denote by div u and Divj u, respectively, the absolutely continuous and jump
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parts of the distributional divergence Div u. Note that the first two terms of (1) reduce to 〈∇I, u〉
when everything is smooth.

To motivate (1), in particular the introduction of the term τ Divj u, let us first take a look at
the conventional transport equation. Given a velocity field b : Rn+1 → Rn depending on (t, x), and
initial data τ : Rn → R, this is written with unknown I : Rn+1 → R as

∂tI + 〈∇xI, b〉 = 0, I(0, · ) = τ. (2)

If b and τ are smooth, classical results on the ordinary differential equation γ′(t) = b(t, γ(t)) then
show the existence of a unique smooth solution I. Starting with the renormalisation theory of
DiPerna and Lions [3], a body of more recent research exists on relaxed assumptions that still
ensure the meaningfulness and uniqueness of solutions to (2). Usually one, however, encounters
an assumption of the type div b ∈ L1(0, T ;L∞(Rn)). This forces a great degree of regularity on
the problem: as shown by Ambrosio [4], there still exists a “regular Lagrangian flow” that can
transport I(t, · ) between time instants. The least strict assumption that we have discovered is the
one-sided Lipschitz condition (OSLC) of Bouchut et al. [5] that is, in fact, also a sufficient condition
for uniqueness in Filippov’s theory [6] on solutions to differential inclusions. Roughly speaking,
it allows negative singularities or jumps in the distributional divergence of b, while disallowing
positive ones. But we want them!

In the context of imaging, the differential equation of (2) is also known as the optical flow
constraint or equation; see, e.g., Aubert and Kornprobst [7]. The vector field b describes the
transformation of the scene I(t, · ) at each time instant t into the one at following instants. In
many imaging applications, the bounded-divergence theories are, however, insufficient. Consider
a simple example of a ball thrown into the air, imaged from the side. (See Figure 1.) As the
ball travels, part of the background becomes hidden, creating a sink or negative jump part in the
distributional divergence of b. This situation is still covered by the OSLC. However, part of the
scene is also revealed as the ball no longer occludes that part. There is a positive jump part in the
divergence of b, or a source. This is no longer covered by the earlier studies. Our introduction of
the term τ Divj u in (1) will, as we shall see, facilitate the modelling of this situation.

Our task then is to study properties of (1). We prove the continuity of a set-valued functional
on (I, u) corresponding to (1), along with uniqueness and existence of solutions, subject to trace
constraints. Throughout we assume I and u bounded in L∞. While only convergence pointwise
almost everywhere is required of I, much stronger form of convergence is required of u in our
continuity results: a type of “segregated” weak convergence guaranteed by the SBD compactness
theorem of Bellettini et al. [8] along with convergence of the total variations |Divj u|(Rn+1). We
show the existence of solutions to (1) subject to given traces in a rather weak distributional sense
on the “source parts” L±u of the jump set Ju. These are defined as where 〈u±,±νJu〉 ≥ 0 and
〈u+−u−, νJu〉 6= 0 (see Figure 2). The existence proof depends on approximating u by more regular
functions. For this we refine the SBD approximation theorem of Chambolle [9, 10] to ensure the
L1 convergence of traces. As a byproduct, we are able to generalise the SBV approximation result
of Cortesani and Toader [11] to the SBD case when Eu ∈ L2(Ω), improving on an observation of
Negri; see, e.g., [12, Proposition 2.4]. Finally, we provide a result on uniqueness of solutions to (1)
subject traces on L±u . The proof is based on renormalisation arguments similar to DiPerna and
Lions [3], and the related divergence chain rule due to Ambrosio et al. [13, 14].

Following the work of Borz̀ı et al. [15], we will then apply condition (1) to an image interpolation
problem. We want to fit to available data a space-time image I ∈ BV((0, T ) × Ω) subject to the
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optical flow constraint. Employing SBD/BV regularisation, this problem is exemplified by

min J(I, u) subject to (1) and ‖u‖L∞ ≤Mu, ‖I‖L∞ ≤MI with (3)

J(I, u) :=

∫
Ωd

‖I − Id‖22 dLn+1 + θ|DI|(Rn+1)

+ β|Eju|(Rn+1) +

∫
ψ(|Eu|) dLn+1 + η(Divj u) + γHn(Ju).

(4)

Here Ωd ⊂ (0, T ) × Ω is the domain where the data Id is available. The term η(Divj u) is a
regularisation tool that we develop for ensuring the discussed convergence of |Divj u|(Rn+1) subject
to weak* convergence of Divj u. The latter is ensured by the other regularisation terms on u and
the L∞ bound.

When data is only available at initial and final times, solutions of (3) can be used in image
registration applications. When more data is available, the solutions can be used for interpola-
tion/reconstruction of video sequences, for example. In this imaging context, a considerable body
of previous work on problems related to but different from (3) exists in literature. In addition
to the already mentioned [15], we therefore restrict ourselves to pointing out just a few particu-
lar examples most directly related to our work through either a discontinuous setting or elastic,
i.e., BD-type regularisation. Hinterberger et al. [16], for one, consider the problem of minimising
b 7→

∫
Ω ψ(|∂tI + 〈∇xI, b〉|) at a single time instant when the image I and its space-time differential

are known at that instant. These authors consider, among others, BD velocity fields, but expect
considerable C2 regularity from the known image. Aubert and Kornprobst [17], on the other hand,
conduct an intricate study of a particular example case of this problem with the image also allowed
to lie in SBV, while the velocity field is in BV with Lp divergence – a type of assumption seen in
most work on the transport equation, as discussed above. Finally, in the paper of Keeling and Ring
[18], the image registration problem of finding a space-time image I that satisfies given initial and
final conditions is considered, minimising the deviation

∫
ψ(|∂tI + 〈∇xI, b〉|) from the optical flow

constraint over all time instants. In this work also elastic regularisation is applied, but additional
assumptions are made to ensure the velocity field lies in H1((0, T )× Ω).

The rest of this paper is arranged as follows. In Section 2 we introduce the basic notation and
necessary preliminaries from the theory of functions of bounded deformation. In that section, we
also prove the refined SBD approximation result. Then, in Section 3, we study the extension (1)
of the transport equation (2). Finally, in Section 4 we briefly study theoretical properties of the
optical flow fitting problem (3), and conclude the paper. The study of theoretical and numerical
properties of discretisations of (1)–(4) is ongoing and future research.

2. Preliminaries

2.1. Basic notation

We denote the unit sphere in Rm by Sm−1, and the open ball of radius ρ centred at x by
B(x, ρ). The boundary of a set A is denoted ∂A, and the closure by clA. For ν ∈ Rm, we denote
the orthogonal hyperplane by ν⊥ := {z ∈ Rm | 〈ν, z〉 = 0}.

The identity matrix is denoted id, and for u, v ∈ Rm, we define u⊗ v ∈ Rm×m by (u⊗ v)(x) :=
u〈v, x〉. The trace of a matrix A ∈ Rm×m is denoted TrA, and the k-dimensional Jacobian of a
linear map L : Rk → Rm (k ≤ m) is defined as Jk[L] :=

√
det(L∗ ◦ L).
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We denote sets of functions essentially bounded by a given M > 0 by

L∞M (A;B) := {f : A→ B | ‖f‖L∞(A;B) ≤M}.

The space of (signed) finite Radon measures on an open set Ω is denoted M(Ω). The k-
dimensional Hausdorff measure, on any given ambient space Rm, (k ≤ m), is denoted by Hk, while
Lm denotes the Lebesgue measure on Rm. For a measure µ and a measurable set A, we denote by
µxA the measure defined by (µxA)(B) := µ(A∩B). The total variation measure of µ is denoted |µ|.
The upper and lower k-dimensional densities of a positive Radon measure µ at x are, respectively,
defined as

Θ∗k(µ, x) := lim sup
δ↘0

µ(B(x, δ))/(ωkδ
k), and Θ∗k(µ, x) := lim inf

δ↘0
µ(B(x, δ))/(ωkδ

k),

where ωk is the volume of the unit ball in Rk. When the limits agree, it is denoted Θk.
A set Σ ⊂ Rm is said to be countably Hk-rectifiable, if there exist countably many Lipschitz

functions fi : Rk → Rm, such that Hk(Σ \
⋃∞
i=0 fi(Rk)) = 0. If, moreover, Hk(Σ) < ∞, then Σ is

said to be Hk-rectifiable.
If {Ai}∞i=0 is a sequence of sets in a topological space X, we then define the outer and inner

limits as

lim sup
i→∞

Ai := {x ∈ X | xj → x for some xj ∈ Aij and 0 ≤ i0 < i1 < . . .}, and

lim inf
i→∞

Ai := {x ∈ X | xi → x for some xi ∈ Ai with i = 0, 1, 2, . . .}.

If F : A ⇒ B is a set-valued function between topological spaces A and B, it is said to be
outer-semicontinuous if lim supi→∞ F (xi) ⊂ F (x) for any xi → x, and inner-semicontinuous if
lim infi→∞ F (xi) ⊃ F (x) for any xi → x; see e.g. [19].

Finally, given a vector field u ∈ L∞(Rm;Rm) such that the distributional divergence Div u is a
Radon measure, we define the normal trace on an open set Ω with C1 boundary as

Tr(u, ∂Ω)(ϕ) :=

∫
Ω
〈∇ϕ, u〉 dLm +

∫
Ω
ϕdDiv u, (ϕ ∈ C∞c (Rm)).

The distribution Tr(u, ∂Ω) is a function concentrated on ∂Ω and satisfying ‖Tr(u, ∂Ω)‖L∞(∂Ω;Rm) ≤
‖u‖L∞(Ω;Rm); see [13]. Using this definition, one-sided normal traces Tr±(u,Σ) can be defined on
an oriented C1 hypersurface Σ, and, by extension, oriented countably Hm−1-rectifiable Σ.

2.2. Functions of bounded deformation

Following Temam [1], a function u : Ω → Rm on a bounded open set Ω ⊂ Rm, is said to be of
bounded deformation, denoted u ∈ BD(Ω), if its components are in L1(Ω), and the symmetrised
distributional gradient Eu := (Du + (Du)T )/2 is a bounded measure. In other words, all the
components (Diuj +Djui)/2 with i, j = 1, . . . ,m are measures with finite total variation.

If the boundary of Ω is Lipschitz (or C1), then the trace tr(u, ∂Ω) of u exists on ∂Ω.
Similarly to functions of bounded variation (see, e.g., [20]), given a sequence {ui}∞i=1 ⊂ BD(Ω),

strong convergence to u ∈ BD(Ω) is defined as strong L1 convergence ‖ui − u‖L1(Ω) → 0 together

with convergence of the total variation |E(u−ui)|(Ω)→ 0. Weak convergence is defined as ui → u
strongly in L1(Ω) along with Eui ∗⇀ Eu weakly* in M(Ω).
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According to Ambrosio et al. [2], the symmetrised gradient may be decomposed as Eu = EuLm+
Eju+Ecu, where Eu is the density of the absolutely continuous part, and equals (∇u+ (∇u)T )/2
Lm-a.e. We sometimes use the notation Eau := EuLm. The jump part Eju may be represented as

Eju = (u+ − u−)� νJuHm−1xJu

:=
1

2

(
(u+ − u−)⊗ νJu + νJu ⊗ (u+ − u−)

)
Hm−1xJu,

(5)

where x is in the jump set Ju of u if for some ν := νJu(x) there exist one-sided traces u±(x) defined
as satisfying

lim
ρ↘0

1

ρm

∫
B±(x,ρ,ν)

‖u±(x)− u(y)‖ dy = 0, (6)

where B±(x, ρ, ν) := {y ∈ B(x, ρ) | ±〈y − x, ν〉 ≥ 0}. It turns out that Ju is countably Hm−1-
rectifiable, and ν is (a.e.) the normal to Ju. The remaining Cantor part Ecu vanishes on any Borel
set σ-finite with respect to Hm−1. The space SBD(Ω) of special functions of bounded deformation
is defined as those u ∈ BD(Ω) with Ecu = 0.

We may write the distributional divergence of u as Div u =
∑m

i=1〈ξi, Euξi〉 = TrEu when
ξ1, . . . , ξm is the standard basis of Rm. Accordingly, the absolutely continuous part, div u, can
be defined through div u =

∑m
i=1〈ξi, Euξi〉, while the jump part of the divergence is defined as

Divj u :=
∑m

i=1〈ξi, Ejuξi〉. This may also be written

Divj u = 〈u+ − u−, νJu〉Hm−1xJu.

We denote by Su the complement of the set where the Lebesgue limit ũ exists. The latter is,
of course, defined by

lim
ρ↘0

1

ρm

∫
B(x,ρ)

‖ũ(x)− u(y)‖ dy = 0.

Finally, we will be employing one-dimensional slices (or sections) of functions u ∈ BD(Ω).
These are defined by u[y,ξ](t) := 〈u(y + tξ), ξ〉 for y, ξ ∈ Rm. We also let

Ω[ξ] := {y ∈ ξ⊥ | y + tξ ∈ Ω for some t ∈ R}, and Ω[y,ξ] := {t ∈ R | y + tξ ∈ Ω}.

For the jump set Ju, we set Ju,ξ := {x ∈ Ju | 〈u+(x)−u−(x), ξ〉 6= 0}. Then the Structure Theorem
of Ambrosio et al. [2] can be stated.

Theorem 1 (Structure Theorem [2]). Suppose u ∈ BD(Ω), and ξ ∈ Rm \ {0}. Then the following
points hold.

1. For any Borel set A ⊂ Ω, we have 〈ξ, Eauξ〉(A) =
∫

Ω[ξ] Dau[y,ξ](A[y,ξ]) dHm−1(y) and

|〈ξ, Eauξ〉|(A) =
∫

Ω[ξ] |Dau[y,ξ]|(A[y,ξ]) dHm−1(y).

2. For any Borel set A ⊂ Ω, we have 〈ξ, Ejuξ〉(A) =
∫

Ω[ξ] Dju[y,ξ](A[y,ξ]) dHm−1(y) and

|〈ξ, Ejuξ〉|(A) =
∫

Ω[ξ] |Dju[y,ξ]|(A[y,ξ]) dHm−1(y).

3. The slices u[y,ξ], ũ[y,ξ] ∈ BV(Ω[y,ξ]) with u[y,ξ] = ũ[y,ξ] a.e. with respect to L1xΩ[y,ξ].

4. For Hm−1-a.e. y ∈ Ω[ξ], the jump sets satisfy Ju[y,ξ] = J
[y,ξ]
u,ξ , and we have

〈ξ, u±(y + tξ)〉 = (u[y,ξ])±(t) = lim
s→t±

ũ[y,ξ](s)

for every t ∈ J [y,ξ]
u,ξ . The normals of Ju and Ju[y,ξ] are oriented to satisfy 〈νJu , ξ〉 ≥ 0 when

ν
J

[y,ξ]
u

= 1.
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Here Daf and Djf denote the absolutely continuous and jump parts of the distributional
gradient Df of a function f of bounded variation. In the present one-dimensional setting of
f : Ω[y,ξ] ⊂ → R, they are equal to Eaf and Ejf , but see [2, 20] for details.

The following compactness result of Bellettini et al. [8] will also be important.

Theorem 2 (SBD compactness [8]). Let Ω ⊂ Rm be open and bounded. Suppose ψ : [0,∞) →
[0,∞) is non-decreasing with limt→∞ ψ(t)/t =∞. If {ui}∞i=0 ⊂ SBD(Ω) with

‖ui‖L1 +

∫
Ω
ψ(|Eui|) dx+ |Ejui|(Ω) +Hm−1(Jui) ≤ K <∞,

then there exists a subsequence of {ui}∞i=0, unrelabelled, such that

ui → u strongly in L1(Ω), (7)

Eui ⇀ Eu weakly in L1(Ω), (8)

Ejui ∗⇀ Eju weakly* in M(Ω), and (9)

Hm−1(Ju) ≤ lim infHm−1(Jui). (10)

2.3. An approximation result

In the following Theorem 3 we provide a refinement of the SBD approximation theorem of
Chambolle [9, 10]. Under the additional condition that u is essentially bounded, our claim is the
L1 convergence of one-sided traces on the jump set. In fact, we find (see [1]) that traces in general
are convergent due to the consequent strong convergence of the approximations.

Definition. Given an open set Ω ⊂ Rm, we denote by W∞(Ω) the set of functions u : Ω → Rm
that are in C∞(Ω \ cl J) for some essentially closed J ⊂ Ω (i.e. Hm−1((cl J ∩ Ω) \ J) = 0) that is
contained in the union of finitely many closed connected pieces of C1 surfaces (of dimension m−1).

Definition. We say that a bounded open set Ω ⊂ Rm has C0 boundary ∂Ω if at each x ∈ ∂Ω,
there exists a neighbourhood U of x, a unit vector e ∈ Rm and a continuous map f : e⊥ → R, such
that U ∩ ∂Ω = U ∩ {x+ f(x)e | x ∈ e⊥}.

Theorem 3. Let Ω ⊂ Rm be an open bounded set with C0 boundary ∂Ω. Suppose u ∈ SBD(Ω) ∩
L∞M (Ω;Rm) for some M <∞, and that u satisfies the bound

P (u) :=

∫
Ω
W (Eu(x)) dx+Hm−1(Ju) <∞, where W (A) := Tr(AAT ) + (Tr(A))2/2.

Then there exists a sequence {ui}∞i=0 ⊂ W∞(Ω) ∩ L∞M (Ω;Rm) satisfying

ui → u strongly in L2(Ω;Rm), (11)

Eui → Eu strongly in L2(Ω;Rm×m), (12)∫
Ju∪Jui

∥∥(ui)±(x)− u±(x)
∥∥ dHm−1(x)→ 0, and (13)

Hm−1(Jui∆Ju)→ 0. (14)

In particular |Eui − Eu|(Ω)→ 0, so {ui}∞i=0 converge to u strongly in BD(Ω).
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Proof. The proof and the construction are essentially the same as those presented in [9], with
some additional observations and minor modifications. As the proof is long, we will therefore not
attempt to replicate it in full. Rather, we sketch the overall idea of the original proof for the
reader’s convenience, and then describe the modifications and additional observations needed.

Given ε > 0, first in [9, Theorem 2] a Besicovitch covering argument is used on Ju. This yields
a finite collection of open balls Bj , (j = 1, . . . , k), such that the corresponding closed balls clBj
are mutually disjoint, Hm−1(Ju ∩ ∂Bj) = 0, and Hm−1(Ju \

⋃k
j=1Bj) < ε. Moreover, minding that

Ju is Hn-rectifiable and hence contained on at most countably many C1 surfaces {Γ`}∞`=0, the balls
Bj are asked to be split into two open halves U±j by some Γ`j , and to satisfy

Hm−1((Γ`j∆Ju) ∩ clBj) ≤ ε/(1− ε)Hm−1(Ju ∩Bj). (15)

Next, it is set At := {x ∈ Rm | dist(x,Ω \
⋃k
j=1 clBj) < t} for some small enough t > 0

that Hm(Ju ∩ At) ≤ 2ε. Then a sequence of approximations {uiU}∞i=0 ⊂ W∞(U) ∩ L∞M (U ;Rm) is
constructed separately on each U = U±1 , . . . , U

±
k , (At ∩Ω) by invoking Lemma 2 below, refining [9,

Theorem 1]. The approximations satisfy for some constant cm > 0 that∥∥uiU − u∥∥L2(U ;Rm)
→ 0,∥∥tr(uiU , ∂U)− tr(u, ∂U)

∥∥
L1(∂U ;Rm)

→ 0, and (16)

lim sup
i→∞

∫
U
W (EuiU (x)) dx+Hm−1(cl (JuiU

∩ U)) ≤
∫
U
W (Eu(x)) dx+ cmHm−1(Ju ∩ U). (17)

Setting uiBj (x) = ui
U±j

(x) when x ∈ U±j , the approximations uiB1
, . . . , uiBk , u

i
At

are then combined

for large enough i (see [9, Lemma 3.1]) using a partition of unity on B1, . . . , Bk, At to yield a final
approximation uε with energy P (uε) that does not exceed P (u) by more than a constant factor of
ε. Defining ui := uεi for a sequence εi ↘ 0, the claims (11), (12), and

Hm−1(Jui)→ Hm−1(Ju) (18)

of the original approximation result now follow without much effort from a variant of Theorem 2;
see [9, Theorem 3].

We now have to prove (13) and (14). Let us observe that thanks to (16) we have

Rij :=

∫
Ju∩Bj∩Γ`j

∥∥(uiBj )
±(x)− u±(x)

∥∥ dHm−1(x)→ 0, (i→∞).

Minding that JuiBj
consists of points x ∈ Bj such that there exists two different one-sided limits

(uiBj )
+(x) 6= (uiBj )

−(x)}, it follows that also

H i
j := Hm−1(Ju ∩Bj ∩ Γ`j \ JuiBj

)→ 0, (i→∞).

For the proof of this fact we refer to Lemma 7 in the Appendix. (There we take A = Ju ∩Bj ∩Γ`j ,
vi = (uiBj )

+− (uiBj )
−, and µ = Hm−1.) Hence we may deduce that if we take iεj large enough, then

both
Rij , MH i

j ≤Mε/(1− ε)Hm−1(Ju ∩Bj), (i ≥ iεj).
7



From (15) we also have

Hm−1(Ju ∩Bj \ Γ`j ) ≤ ε/(1− ε)H
m−1(Ju ∩Bj).

Minding that ‖u‖L∞(Ω;Rm) ≤M , we then get the estimate∫
Ju∩Bj

∥∥(uiBj )
±(x)− u±(x)

∥∥ dHm−1(x) ≤ Rij +MHm−1(Ju ∩Bj \ Γ`j )

≤ 2Mε/(1− ε)Hm−1(Ju ∩Bj), (i ≥ iεj),
(19)

along with

Hm−1(Ju ∩Bj \ JuiBj
) ≤ H i

j +Hm−1(Ju ∩Bj \ Γ`j )

≤ 2ε/(1− ε)Hm−1(Ju ∩Bj), (i ≥ iεj).
(20)

Since the balls Bj are mutually disjoint, constructing uε with i ≥ iεj , we therefore have by summing
over the estimates (19) on B1, . . . , Bk and the bound Hm(Ju ∩At) ≤ 2ε on At that∫

Ju

∥∥u±ε (x)− u±(x)
∥∥ dHm−1(x) ≤ 2εM +

k∑
j=1

(
2Mε/(1− ε)Hm−1(Ju ∩Bj)

)
≤ 2Mε

(
1 +Hm−1(Ju)/(1− ε)

)
.

(21)

Likewise, employing (20), we deduce that

Hm−1(Ju \ Juε) ≤ 2ε+
k∑
j=1

(
2ε/(1− ε)Hm−1(Ju ∩Bj)

)
≤ 2ε(1 +Hm−1(Ju)/(1− ε)). (22)

Recalling that ui := uεi and combining (22) with (18), we obtain (14). In particular, Hm−1(Jui \
Ju)→ 0. Employing the bound ‖u‖L∞(Ω;Rm) ≤M , this implies∫

Jui\Ju

∥∥(ui)±(x)− u(x)
∥∥ dHm−1(x)→ 0, (i→∞).

Combining this observation with (21) completes the proof of (13).
We must still show strong convergence. Thanks to Lm(Ω) <∞, it follows that the L2 conver-

gences (11) and (12) hold in L1 as well. Thus, in particular, ‖Eui − Eu‖L1(Ω;Rm) → 0. From (13)

it follows that |Ejui−Eju|(Ω)→ 0. Combined, we find |Eui−Eu|(Ω)→ 0, so the claimed strong
convergence follows.

To prove Lemma 2 employed in the above proof, we first need the following extension result.

Lemma 1. Suppose Ω ⊂ Rm is a bounded open set with C0 boundary ∂Ω. Let u ∈ SBD(Ω) ∩
L∞M (Ω;Rm) be given with P (u) <∞. Then for any ε > 0 there exists Ω′ c Ω and u′ ∈ SBD(Ω′) ∩
L∞M (Ω′;Rm) with ∥∥u′ − u∥∥

L2(Ω;Rm)
≤ ε, (23)∫

Ω′
W (Eu′(x)) dx ≤

∫
Ω
W (Eu(x)) dx+ ε, (24)

Hm−1(Ju′) ≤ Hm−1(Ju) + ε, and (25)∥∥tr(u′, ∂Ω)− tr(u, ∂Ω)
∥∥
L1(∂Ω;Rm)

≤ ε. (26)

Moreover, Hm−1-a.e. point x ∈ ∂Ω is a Lebesgue point of u′.
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Proof. This lemma improves [9, Lemma 3.2], and the construction employed is nearly the same,
just with more meticulous choice of the perturbations zti , where originally simply zti = tei. We will
therefore not prove (23)–(25) as they follow exactly as in [9]. We only describe the construction
employed and show (26) together with the Lebesgue point property.

The construction is as follows. Thanks to ∂Ω being of class C0, we may cover it with finitely
many open balls {Ai}ki=1, such that there is another set of open balls Bi c Ai, directions ei ∈ Sm−1,
and continuous maps fi : Di ⊂ e⊥i → R that give Bi ∩ ∂Ω = Bi ∩ {x + fi(x)ei | x ∈ Di}. In fact,
we may assume fi uniformly continuous, since we may replace Bi by a smaller ball containing Ai.
For t > 0, let us set

Zti :=
{
z ∈ Rm

∣∣ ∥∥z − 〈z, ei〉ei∥∥ ≤ 〈z, ei〉 ∈ (0, t], Ai ∩ cl Ω ⊂ Ai ∩ (Ω + z)
}
.

That is, Zti is the subset of perturbations in a truncated cone with axis ei that satisfy Ai ∩ cl Ω ⊂
Ai∩(Ω+z). For small perturbations z such that Ai ⊂ Bi+z, this latter condition may equivalently
be written as

fi(x) < fi(x− (z − 〈z, ei〉ei)) + 〈z, ei〉 for x ∈ Di with x+ fi(x)ei ∈ Ai.

If we define the slices Z̄si := Zsi ∩ {z ∈ Rm | 〈z, ei〉 = s}, (s > 0), then z ∈ Z̄si follows if both
Ai ⊂ Bi + z and

fi(x)− f i(x+ sei − z) < s for x ∈ Di with x+ fi(x)ei ∈ Ai.

Minding the inclusion Bi c Ai and the uniform continuity of fi, it follows that for each s > 0 there
exists δs > 0 such that z ∈ Z̄si if 〈z, ei〉 = s and ‖z − sei‖ < δs. Hence Hm−1(Z̄si ) > 0, so that also

Lm(Zti ) =

∫ t

0
Hm−1(Z̄si ) ds > 0.

For each t > 0, let us now choose some zti ∈ Zti , to be determined later in more detail. Observe
that zti → 0 as t↘ 0. Within Ai∩(Ω+zti), we then define uti(x) := u(x−zti). We also choose A0 b Ω

such that cl Ω ⊂
⋃k
i=0Ai, and set ut0(x) := u(x) in A0. We choose a special smooth partition of

unity ϕ0, . . . , ϕk on A0, . . . , Ak, given by [9, Lemma 3.1], that satisfiesHm−1((Ju∩(
⋃k
i=0 supp cl{0 <

ϕi < 1})) ≤ ε/(2(k + 1)). Then, we let ut :=
∑k

i=0 ϕiu
t
i, which is a function in SBD(Ωt) for

Ωt := A0 ∪
⋃k
i=1(Ai ∩ (Ω + zti)).

The properties (23)–(25) now hold for u′ = ut and Ω′ = Ωt when t is small enough, exactly as
shown in [9]. To show (26), we first observe that Eju(· −zti)

∗⇀ Eju as well as
∣∣Eju∣∣(· −zti) ∗⇀

∣∣Eju∣∣
weakly* as measures as t↘ 0. Secondly, from the expression (5) for Eju, and the continuity of ϕi,
we observe that Ej(ϕiu

t
i) = ϕiE

juti. Therefore, for any ϕ ∈ Cc(Rm),

Ej(ϕiu
t
i)(ϕ) = (ϕiE

juti)(ϕ) = Eju(· − zti)(ϕiϕ)

→ Eju(ϕiϕ) = (ϕiE
ju)(ϕ) = Ej(ϕiu)(ϕ), (t↘ 0; i = 0, . . . , k),

so Ej(ϕiu
t
i)
∗⇀ ϕiE

ju weakly* in M(Rm). Consequently, weakly* in M(Rm), we have

Ejut =
k∑
i=0

Ej(ϕiu
t
i)
∗⇀

k∑
i=0

ϕiE
ju = Eju, (t↘ 0). (27)
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Likewise, minding that ϕ ≥ 0, we find that
∣∣Ej(ϕiuti)∣∣ ∗⇀ ϕi

∣∣Eju∣∣ as t ↘ 0 for i = 0, . . . , k.
Now,

∣∣Ejut∣∣(Ω) →
∣∣Eju∣∣(Ω) as t ↘ 0 follows similarly to (27) if we can show that the total

variations measures decompose as
∣∣∑k

i=0 ϕiE
juti
∣∣ =

∑k
i=0

∣∣ϕiEjuti∣∣. Towards this end, we have to
choose the perturbations zti ∈ Zti carefully. By application of Fubini’s theorem, we observe that
the set

N := {z ∈ Rm | Hm−1(Ju ∩ (z + Ju)) > 0}

has zero Lm measure, as do

Ni := {z ∈ Rm | Hm−1((Ju + z) ∩ ∂Ω ∩Ai) > 0}, (i = 1, . . . , k).

Therefore, since Lm(Zti ) > 0 for t > 0, as we have shown, it is possible to make the choices

zti ∈ Zti \ (Ni ∪N ∪
⋃
j<i

(N + zjt )).

Since Juti = (Ju+zti)∩(Ai∩Ωt), we then find thatHm−1(Juti∩Jutj∩(Ai∩Aj∩Ωt)) = 0 for all i 6= j with

i, j = 0, 1, 2, . . . , k. (The sets Ni have not been employed yet; we will use them shortly to get the
claim on the Lebesgue points.) Clearly, minding (5), we now have

∣∣∑k
i=1 ϕiE

juti
∣∣ =

∑k
i=0

∣∣ϕiEjuti∣∣.
Thus

∣∣Ejut∣∣(Ω)→
∣∣Eju∣∣(Ω) as t↘ 0.

Now, observe that Eut → Eu strongly in L1(Ω;Rm×m) due to the strong convergence in
L2(
⋃k
i=0Ai;Rm×m) shown in [9], and Lm(Ω) < ∞. It follows that

∣∣Eut∣∣(Ω) →
∣∣Eu∣∣(Ω) as t ↘ 0.

Knowing (23), also ut → u strongly in L1(Ω;Rm). Hence we find that ut converges to u “in the
intermediate sense” on Ω. But the trace operator into L1 is continuous in the topology of inter-
mediate convergence by [1, Theorem 3.1]. This gives (26) for u′ = ut and Ω′ = Ωt when t is small
enough.

Finally, to show that Hm−1-a.e. point x ∈ ∂Ω is a Lebesgue point of u′, first observe that for
i = 1, . . . , k, we have Hm−1((Ju + zti) ∩ (∂Ω ∩Ai)) = 0 due to zti 6∈ Ni. This gives

Hm−1(Juti ∩ (∂Ω ∩Ai)) = 0.

But, recalling that Suti denotes the complement of the Lebesgue set of uti, we also have

Hm−1(Suti \ Juti ∩ (∂Ω ∩Ai)) = 0.

This follows by choosing v = cχΩ∩Ai ∈ BD(Ai) for some constant c ∈ Rm \ {0} in [2, Theorem
6.1], which claims that |Ev|(Suti \ Juti) = 0 for any v ∈ BD(Ai). Minding that A0 b Ω, we have
therefore shown that

Hm−1(Suti ∩ (∂Ω ∩Ai)) = 0, (i = 0, . . . , k).

But this says that Hm−1-a.e. x ∈ ∂Ω∩Ai is a Lebesgue point of uti. Hence, as ut =
∑k

i=0 ϕiu
t
i and

the partition of unity ϕi is smooth, we observe as claimed that Hm−1-a.e. x ∈ ∂Ω is a Lebesgue
point of ut.

Lemma 2. Suppose Ω ⊂ Rm is a bounded open set with C0 boundary ∂Ω. Let u ∈ SBD(Ω) ∩
L∞M (Ω;Rm) be given with P (u) <∞. Then there exists a sequence {ui}∞i=0 ⊂ W∞(Ω)∩L∞M (Ω;Rm)
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with each Jui contained on finitely many (m− 1)-simplices, and we have∥∥ui − u∥∥
L2(Ω;Rm)

→ 0, (28)∥∥tr(ui, ∂Ω)− tr(u, ∂Ω)
∥∥
L1(∂Ω;Rm)

→ 0, and (29)

lim sup
i→∞

∫
Ω
W (Eui(x)) dx+Hm−1(cl Jui) ≤

∫
Ω
W (Eu(x)) dx+ cmHm−1(Ju), (30)

where cm is a constant depending on the dimension m only.

Proof. Once again, the construction and proof of this lemma are a refinement of [9, Theorem 1],
so we will only describe the overall idea and the additions needed to achieve our claims.

The first step of the construction is to choose an arbitrary ε > 0 and apply Lemma 1 to extend
u as u′ from Ω onto a larger set Ω′ c Ω. Then a finite element approximation of u′ is performed
on Ω′, while also preventing the blow-up of Eui and approximating the jump set of u′ with “jump
cubes”. The selection of these jump cubes and the interpolation grid is a rather lengthy process,
but for our purposes it suffices to mention that it is possible to choose arbitrarily a shift y from a
subset of positive measure of [0, 1)m, such that when vh for h > 0 is constructed as described next,
then ∥∥vh − u′∥∥

L2(Ω;Rm)
→ 0, (h↘ 0), and (31)∫

Ω
W (Evh(x)) dx+Hm−1(cl Jvh) ≤

∫
Ω′
W (Eu′(x)) dx+ cmHm−1(Ju′). (32)

To proceed with the construction, let us choose an orthonormal basis {ej}mj=1 of Rm, satisfying

Hm−1({x ∈ Ju | 〈(u′)+(x)− (u′)−(x), e〉 = 0}) = 0 for all e ∈ {ek}mk=1 ∪{ek − e`}mk,`=1. Then, given
h > 0 and letting G :=

∑m
j=1 Zej , finite element interpolation is performed on the grid hy+hG∩Ω′

with shape functions of the form ∆(x) :=
∏m
j=1 max{0, 1− |〈ej , x〉|}, to yield

wh(x) :=
∑

ξ∈hG∩Ω′

u′(hy + ξ)∆((x− ξ)/h− y).

Next, cubes ξ + hQy for ξ ∈ hZm and Qy := y +
∑m

j=1[0, 1)ej are chosen as jump cubes if
ξ ∈ Ju′ + hV , where V is a one-dimensional set modelling the interactions between different nodes
ξ. Then the original final approximation in [9], satisfying (31), (32), is obtained by setting vh(x)
to wh(x) whenever x does not belong to a jump cube, and vh(x) to 0 when x does belong to a
jump cube. We will have to alter this construction a bit on the jump cubes.

In the original proof, the shift y ∈ [0, 1)m is chosen arbitrarily from a subset of eligible points
of positive Lm-measure. We can therefore assume that the choice is such that all the points of
hy+ (hG∩Ω′), used in the construction of wh, are Lebesgue points of u′. Since Hm−1-a.e. x ∈ ∂Ω
is, by Lemma 1, likewise a Lebesgue point of u′, it therefore follows from a simple mollification
argument that wh is convergent pointwise a.e. to u′ on ∂Ω. Since u′ is bounded andHm−1(∂Ω) <∞,
the Egorov and Vitali convergence theorems then establish L1(∂Ω;Rm) convergence of the traces
tr(wh, ∂Ω) to tr(u′, ∂Ω). But the convergence of traces may not hold for vh, as ∂Ω may be covered
by jump cubes. We therefore modify the construction as follows. Again on the grid hy + hG ∩Ω′,
we define the piecewise constant approximations

w̄h(x) :=
∑

ξ∈hG∩Ω′

χ(ξ+hQy)∩Ω′(x)

Lm((ξ + hQy) ∩ Ω′)

∫
(ξ+hQy)∩Ω′

u′(x) dx.
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As above, we then observe that the traces tr(w̄h, ∂Ω) converge to tr(u′, ∂Ω) in L1(∂Ω;Rm). Also
w̄h → u′ strongly in L2(Ω′;Rm) due to standard approximation results. Now we set

v̄h(x) :=

{
wh(x), x belongs to a jump cube,

w̄h(x), x does not belong to a jump cube.

By the discussion above and (31), it easily follows that∥∥v̄h − u′∥∥
L2(Ω;Rm)

→ 0, and
∥∥tr(v̄h, ∂Ω)− tr(u′, ∂Ω)

∥∥
L1(∂Ω;Rm)

→ 0, (h↘ 0). (33)

Regarding (32), we observe that this modification does not alter the energies
∫

ΩW (Evh(x)) dx, the
function w̄h being constant on each jump cube. Moreover, the estimate (32) was actually obtained
in [9] through the estimates

cl Jvh ⊂
⋃
{∂(ξ + hQy) | ξ ∈ hG, ξ + hQy jump cube}, and∫

Ω
W (Evh(x)) dx+KhHm−1(hQy) ≤

∫
Ω′
W (Eu′(x)) dx+ cmHm−1(Ju′),

where Kh the number of jump cubes. But the jump cubes are not changed by our altered con-
struction (although the jump set Jvh contained on their boundaries may be), so (32) continues to
hold for v̄h.

One issue however remains. The approximations v̄h are Lipschitz continuous away from the
jump cube boundaries, but not in W∞(Ω). This can be resolved by smoothing wh. Indeed, we
only have to replace the shape function ∆ by its mollification. Again, this change will not affect
the jump cubes and hence estimates of the energy of the jump set. Moreover, by choosing the
mollification parameter small enough for each h, the convergences (33) can be maintained, and the
energy bound (32) be replaced with∫

Ω
W (E v̄h(x)) dx+Hm−1(cl Jv̄h) ≤

∫
Ω′
W (Eu′(x)) dx+ cmHm−1(Ju′) + ε. (34)

Finally, letting ε ↘ 0, the existence of {ui}∞i=0 satisfying (28)–(29) follows from combining
the estimates (33)–(34) between u′ and v̄h, and the estimates (23)–(26) between u and u′. This
concludes the proof.

Remark 1. If u ∈ SBV(Ω)∩L∞(Ω;Rm) with ‖∇u‖Lp(Ω;Rm×m) +Hm−1(Ju) <∞, then the claim of
Theorem 3 follows from the stronger approximation results of Cortesani and Toader [11], that show
the existence of a sequence {ui}∞i=0 with Jui concentrated on finitely many (m − 1)-dimensional
simplices, and satisfying ui → u strongly in L1(Ω;Rm) and ∇ui → ∇u strongly in Lp(Ω;Rm×m),
along with

lim sup
i→∞

∫
A∩Jui

ϕ(x, (ui)+, (ui)−, νJui ) dH
m−1 ≤

∫
A∩Ju

ϕ(x, u+, u−, νJu) dHm−1

for every A b Ω and upper semicontinuous function ϕ : Ω × Rm × Rm × Sm−1 → [0,∞) with
ϕ(x, a, b, ν) = ϕ(x, b, a,−ν).

In fact, as Negri has observed in, e.g., [12, Proposition 2.4], this result of [11] may be partially
extended to the BD case by combining with the approximation theorem of Chambolle [9, 10], which
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we have refined above. The claim is only for surface energies of the form ϕ(x, a, b, ν) = ϕ(ν), and
no proof is provided. It however does not appear to be based on providing an SBD counterpart to
[11, Lemma 4.1], as this would show the case of general ϕ. Instead, in the isotropic case ϕ(ν) =
‖ν‖2, the claim seems to follow by directly employing (in [11, equation (5.2)]) the convergence of∫
Jui
‖νJui (x)‖ dHm−1 = Hm−1(Jui) that follows from (18). That this holds in the anisotropic case

as well follows from Reshetnyak’s continuity theorem.
Now, how this discussion relates to our work here is that Theorem 3 provides the missing full

SBD counterpart to [11, Lemma 4.1], allowing full extension of [11, Theorem 3.1] to SBD in the
case P (u) <∞ (which is equivalent to ‖Eu‖L2(Ω;Rm×m) +Hm−1(Ju) <∞, hence comparable to the
assumption in the SBV case above).

3. The transport equation

3.1. The generalised formulation

Let Ω ⊂ Rn be open and bounded with Lipschitz boundary. Let the final time T > 0 be
specified, and set ΩT := (0, T ) × Ω. Also fix constants MI ,Mu,Mτ ∈ (0,∞). We then consider
functions I and u in the spaces

XI := L∞MI
(ΩT ), and

Xu := {u ∈ SBD(Rn+1) | u|ΩT = (1, b), u|(Rn+1 \ cl ΩT ) = 0, ‖u‖L∞ ≤Mu},

implicitly extending I outside ΩT by zero. We take u ∈ SBD(Rn+1) instead of SBD(ΩT ), specifically
restricting support, for notational purposes: we want Ju and Divj u to include the jump over ∂ΩT ,
and to record initial conditions at time zero with Divj u.

We then define the D′(Rn+1) -valued functional corresponding to our extension F (I, u; τ) = 0
of the transport equation for u ∈ Xu, I ∈ XI , and τ ∈ L1(Divj u) by

F (I, u; τ)(ϕ) :=
(
Div(Iu)− I div uLn+1 − τ Divj u

)
(ϕ)

= −
∫
〈∇ϕ, Iu〉 dLn+1 −

∫
ϕI div u dLn+1 −

∫
ϕτ dDivj u, (ϕ ∈ C∞c (Rn+1)).

Additionally, for use as a constraint in our image interpolation application of interest, we define
the set-valued function F : XI ×Xu ⇒ D′(Rn+1) by

F (I, u) := {F (I, u; τ) | τ ∈ L∞Mτ
(Ju)}.

The following example, already discussed in the Introduction, demonstrates the role of τ .

Example 1. Consider a moving ball (or other object) in one spatial dimension, as depicted in
Figure 1. The domain ΩT = (0, 1)2 can be divided into three subdomains: A1, A2, and B. In both
A1 and A2, we have u = (1, 0), while in B, we have u = (1, v) for the speed v of movement of the
ball. Recalling that Ju includes jumps on ∂ΩT , we have

Ju = ({0, 1} × [0, 1]) ∪ (∂A1 ∩ ∂B) ∪ (∂A2 ∩ ∂B) ∪ (∂B ∩ ∂ΩT ).
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Figure 1: The situation of Example 1. The ball drawn in black reveals and hides background as it travels.

We easily observe that div u = 0, while, denoting by ν the unit vector orthogonal orthogonal to
(1, v) satisfying c := 〈(1, 0), ν〉 > 0, the jump part of the divergence is

Divj u =〈u+ − u−, νJu〉H1xJu

=H1x({0} × [0, 1])−H1x({1} × [0, 1])

+ c
(
H1x(∂A2 ∩ ∂B)−H1x(∂A1 ∩ ∂B)

)
− v
(
H1x(∂B ∩ {1} × [0, 1])−H1x(∂B ∩ {0} × [0, 1])

)
.

(35)

The background intensity is constant in time, so in A1 ∪ A2, the image I(t, x) = τ0(x) for
any given “initial condition” τ0. In B, we have I = β, where we have taken the moving ball
to have constant intensity β. Thus, Div(Iu) − I div u = Div(Iu) = Divj(Iu). Clearly then
τ = dDivj(Iu)/ dDivj u satisfies F (I, u; τ) = 0, provided Divj(Iu) � Divj u. Let us calculate
Divj(Iu) explicitly. Abusing notation by writing τ0(t, x) = τ0(x), we have

Divj(Iu) =〈I+u+ − I−u−, νJu〉H1xJu

=τ0

(
H1x({0} × [0, 1])−H1x({1} × [0, 1])

)
+ τ0c

(
H1x(∂A2 ∩ ∂B)−H1x(∂A1 ∩ ∂B)

)
− βv

(
H1x(∂B ∩ {1} × [0, 1])−H1x(∂B ∩ {0} × [0, 1])

)
.

(36)

Comparing (35) to (36), we find, as expected, that τ(t, x) = τ0(x) on {0, 1} × [0, 1], and
τ(t, x) = β on ∂B ∩ ∂ΩT . On (∂A1 ∪ ∂A2) ∩ B, we also have τ(t, x) = τ0(x). In this particular
example, with the normal ν always orthogonal to u on one side of jump set, τ thus completely
describes “what goes of I into a sink, or comes from a source”. Furthermore, τ is clearly bounded
when the background intensity is.

In the following, we study various properties of the function F . We begin with showing that F
is continuous in the set-valued sense of being both inner- and outer-semicontinuous. After that we
study existence and subsequently uniqueness of solutions to the inclusion 0 ∈ F (I, u).

3.2. Continuity

We now prove the following theorem that establishes the inner- and out outer-semicontinuities
of F .
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Theorem 4. Suppose {Ii}∞i=0 ⊂ XI converges to I ∈ XI pointwise a.e. in ΩT , and {ui}∞i=0 ⊂ Xu

converges to u ∈ Xu in the sense

ui → u strongly in L1(ΩT ), (37)

div ui ⇀ div u weakly in L1(ΩT ), (38)

Divj ui ∗⇀ Divj u weakly* in M(Rn+1), and (39)

lim
i→∞
|Divj ui|(Rn+1) = |Divj u|(Rn+1). (40)

Then
lim sup
i→∞

F (Ii, ui) ⊂ F (I, u) weakly* in D′(Rn+1). (41)

Suppose, moreover, that Hn(Ju) <∞. Then for every τ ∈ L∞Mτ
(Ju), there exist τ i ∈ L∞Mτ

(Jui),
(i = 0, 1, 2, . . .), such that

F (Ii, ui; τ i) ∗⇀ F (I, u; τ) weakly* in D′(Rn+1). (42)

In particular
lim inf
i→∞

F (Ii, ui) ⊃ F (I, u) weakly* in D′(Rn+1).

Observe that (37)–(39) follow from Theorem 2. We will return to conditions ensuring (40) in
Section 4. The most important consequence of the theorem for our purposes is the following.

Corollary 1. Suppose {Ii}∞i=0 ⊂ XI ∩ BV(Rn+1) converges to I ∈ XI ∩ BV(Rn+1) weakly in
BV(Rn+1), and {ui}∞i=0 ⊂ Xu converges to u ∈ Xu in the sense (37)–(40). Then 0 ∈ F (Ii, ui) for
i = 0, 1, 2, . . . implies 0 ∈ F (I, u).

Remark 2. Under the above assumption that I ∈ XI ∩BV(Rn+1), Proposition 5 in the Appendix
implies that the values of F are, in fact, measures, not just distributions.

Proof of Theorem 4. The outer-semicontinuity (41) is established by showing continuity for each of
the terms Div(Iu), I div uLn+1, and τ Divj u separately. We first tackle Div(Iu). By assumption,
we have ui → u strongly in L1(ΩT ;Rn+1), and Ii → I pointwise a.e. in ΩT . As Ln(ΩT ) < ∞ and
‖Ii‖L∞ ≤ MI , we thus have Iiui ⇀ Iu weakly in L1(ΩT ); see, e.g., [21, Proposition 2.61]. Since
Div is a continuous linear operator between the weak topology on L1 and the weak* topology of
distributions, it follows that Div(Iiui) ∗⇀ Div(Iu) weakly* as distributions,

Next we consider I div uLn+1. By (38), we have div ui ⇀ div u weakly in L1(ΩT ). From the
pointwise a.e. convergence of Ii we therefore get again that Ii div ui ⇀ I div u weakly in L1(ΩT ).
In particular, Ii div uiLn ∗⇀ I div uLn weakly* as measures, hence as distributions.

Finally, we have to study subsequences of {τ i Divj ui}∞i=0 convergent weakly* as distributions.
From (40), u ∈ BD(ΩT ), and τ i ∈ L∞Mτ

(Jui) we however observe that such sequences are bounded,
hence measures (see, e.g., [22]), and may be assumed to converge weakly* as measures. What
we therefore have to establish is that given a subsequence of {τ i Divj ui}∞i=0, unrelabelled, such
that τ i Divj ui ∗⇀ ν weakly* in M(Rn+1), then ν = τ Divj u for some τ ∈ L∞Mτ

(Ju). But, for any
ϕ ∈ Cc(Rn+1), we may calculate

ν(ϕ) = lim
i→∞

τ i Divj ui(ϕ) ≤ lim sup
i→∞

|τ i||Divj ui|(|ϕ|)

≤Mτ lim sup
i→∞

|Divj ui|(|ϕ|) = Mτ |Divj u|(|ϕ|),
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where the last step follows from (40). This shows that |ν| ≤ Mτ |Divj u|, allowing us to conclude
the proof of (41).

Now we have to show (42). We have already shown the continuity of Div(Iu) (as a distribution)
and of I div uLn. Therefore, to complete the proof, it suffices to show the existence of some τ i ∈ Xτ

such that τi Divj ui ∗⇀ τ Divj u weakly* in M(Rn+1).
Towards this end, we let ρ(x) := χB(0,1)(x) exp(−1/(1 − ‖x‖2)) be the standard mollifier on

Rn+1, and set ρε(x) := ε−nρ(x/ε). Mind the factor ε−n instead of ε−(n+1). Then we set

τε(x) := C−1[ρε ∗ (τHnxJu)](x) = C−1

∫
Ju

ρε(x− y)τ(y) dHn(y)

for a yet undetermined constant C. We then observe that by choosing the constant C appropriately,
when the n-dimensional density exists, we have

lim
ε↘0

τε(x) = Θn(τHnxJu, x) for Hn-a.e. x ∈ Rn+1. (43)

Indeed, let us write ρ(x) =
∫ exp(−1)

0 χρ≤t(x) dt. Minding that {x ∈ Rn+1 | ρ(x) ≤ t} = B(0, f(t))
for some decreasing f : [0, e]→ [0, 1], we get

Cτε(x) = ε−n
∫
Ju

∫ exp(−1)

0
χB(0,f(r))((x− y)/ε) drτ(y) dHn(y)

=

∫ exp(−1)

0
[f(r)]n

(
[εf(r)]−n(τHnxJu)(B(x, εf(r)))

)
dr.

By application of Fatou’s lemma, and the fact that Θn(τHnxJu, x) exists for Hn-a.e. x ∈ Rn+1 by

rectifiability, we deduce (43) with C :=
∫ exp(−1)

0 [f(r)]n dr.
But, now, employing our assumptionHn(Ju) <∞, the jump set Ju isHn-rectifiable. Therefore,

Θn(τHnxJu, x) = τ(x) for Hn-a.e. x ∈ Ju, and Θn(τHnxJu, x) = 0 for Hn-a.e. x 6∈ Ju; see, e.g.,
[23, 2]. So, in summary, we get from (43) that τε(x)→ τ(x) as ε↘ 0 for Hn-a.e. x ∈ Rn+1.

Let us then set τ̄ε(x) = max{min{τε(x),Mτ},−Mτ}. Still we have τ̄ε ∈ Cc(Rn+1), and, minding
that τ ∈ L∞Mτ

(Ju), also τ̄ε(x)→ τ(x) as ε↘ 0 for Hn-a.e. x ∈ Rn+1. In consequence,

τ̄ε Divj u ∗⇀ τ Divj u weakly* in M(Rn+1), (ε↘ 0),

Moreover, by the weak* convergence of Divj ui to Divj u, for any ε > 0, we have

τ̄ε Divj ui ∗⇀ τ̄ε Divj u weakly* in M(Rn+1), (i→∞).

Next we observe that all the involved measures lie in a bounded subset of M(Rn+1). Hence the
weak* convergences are given by a metric. We may thus perform a diagonal construction yielding
εi > 0 and τi := τ̄εi |Jui ∈ L∞Mτ

(Jui), (i = 0, 1, 2, . . .), such that τi Divj ui ∗⇀ τ Divj u.

The next proposition shows that provided {Ii}∞i=0 converge weakly* in L∞(ΩT ) (as is the case
for a subsequence when I ∈ XI), then the functional F is closed also with respect to specific
restricted mollifications uεi of u with weaker convergence properties than (37)–(40).
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Proposition 1. Suppose u ∈ Xu, and let {ηε}ε>0 be a family of mollifiers on Rn+1. Let Q :=
(0, T )× Rn, and define uε : Rn+1 → Rn+1 by

uε := χclQ · (ηε ∗ ū), where ū :=

{
u, x ∈ ΩT ,

(1, 0), x ∈ Rn+1 \ ΩT .
(44)

Suppose that {Ii}∞i=0 ⊂ L∞MI
(Q) converges weakly* in L∞(Q) to I ∈ L∞MI

(Q), and that MI ≤ Mτ .
Then, letting Fδ(I, u) := {F (I, u; τ) | τ ∈ L∞Mτ

({0, T} × (Ω + B(0, δ)))} and taking a sequence
εi ↘ 0, we have

lim sup
i→∞

F2εi(I
i, uεi) ⊂ F (I, u) weakly* in D′(Rn+1).

In particular, suppose Ii are solutions of the classical transport equation for velocity field uεi,
and initial condition τ i0 ∈ L∞Mτ

({0} × Rn). Suppose, moreover, that τ i0 have support on {0} ×
(Ω + B(0, 2εi)), and are convergent weakly* in L∞({0} × Ω) to τ0. Then F (I, u; τ) = 0 for some
τ ∈ L∞Mτ

(Ju) satisfying τ = τ0 on {0} × Ω.

(The restriction of τ in the definition of Fδ is only needed because Divj uε has unbounded
support ∂Q. We could alternatively restrict uε to [0, T ]× (Ω +B(0, 2εi)), assuming that supp ηε b
B(0, 2ε).)

Proof. First of all, we claim that

div uε = ηε ∗ (Div uxQ) on Q. (45)

To see this, we observe that on {0, T}×Ω, with normal ν = (1, 0), we have 〈ū±, ν〉 = 1. Therefore,
we necessarily have Divj ūx({0, T} × Ω) = 0. Then we note that on (0, T ) × ∂Ω with normal ν
satisfying 〈ν, (1, 0)〉 = 0 and pointing out of ΩT , we get 〈ū+, ν〉 = 0 and 〈ū−, ν〉 = 〈u−, ν〉. Thus the
jump divergence is unaffected: Divj ūx((0, T )× ∂Ω) = Divj ux((0, T )× ∂Ω). As ū = 0 is constant
outside ΩT , it follows that Div ū = Div uxQ. This shows (45).

Since Div uxQ = div uLn+1 + Divj uxQ, we now have for any ϕ ∈ C∞c (Rn+1) that∫
Q
ϕIi div uεi dx =

∫
Q
ϕIi(ηεi ∗ div u) dx+

∫
Q
ϕIi(ηεi ∗ (Divj uxQ)) dx, (i = 0, 1, 2, . . .). (46)

We next study the convergence properties of the two terms on the right hand side of (46). Because
|ηεi ∗ (Divj uxQ)Ln+1|(Q) ≤ |Divj u|(Rn+1) < ∞ by standard properties of mollification, and
‖Ii‖L∞ ≤MI <∞, it follows that there is a subsequence of {(Ii, εi)}∞i=0, unrelabelled, such that

Ii(ηεi ∗ (Divj uxQ)) ∗⇀ ν weakly* in M(Rn+1)

for some finite Radon measure ν concentrated on clQ. Now we observe that by standard mollifi-
cation results

|ηεi ∗ (Divj uxQ)Ln+1| ∗⇀ |Divj uxQ| weakly* in M(Rn+1).

As in the the proof of Theorem 4, it therefore follows that there exists τint ∈ L∞MI
(Divj uxQ) such

that
ν = τint Divj uxQ.
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Next, we note that as ηεi ∗ div u→ div u strongly in L1(Q), and Ii ∗⇀ I weakly* in L∞(Q), we
have Ii(ηεi ∗ div u) ⇀ I div u weakly in L1(Q). The decomposition (46) thus yields∫

Q
ϕIi div uεi dx→

∫
Q
ϕI div u dx+

∫
ϕτint dDivj uxQ, (ϕ ∈ C∞c (Rn+1)). (47)

Similarly, as uεi → u strongly in L1(Q), we also have∫
Q
〈∇ϕ, Iiuεi〉 dx→

∫
Q
〈∇ϕ, Iu〉 dx, (ϕ ∈ C∞c (Rn+1)). (48)

Next, we note that Divj uε = Hnx{0} × Rn −Hnx{T} × Rn and Divj ux∂Q = Hnx{0} × Ω −
Hnx{T} × Ω. Hence, given τ i ∈ L∞Mτ

({0, T} × (Ω + B(0, 2εi))), (i = 0, 1, 2, . . .), we establish the
existence of some τ∂ ∈ L∞Mτ

({0, T} × Ω), such that for an unrelabelled subsequence

τ i Divj uεi ∗⇀ τ∂ Divj ux∂Q weakly* in M(Rn+1). (49)

Combining (47)–(49), we now obtain∫
Q
〈∇ϕ, Iiuεi〉 dx+

∫
Q
ϕIi div uεi dx+

∫
clQ

ϕτ i dDivj uεi

→
∫
Q
〈∇ϕ, Iu〉 dx+

∫
Q
ϕI div u dx+

∫
clQ

ϕτ dDivj u, (ϕ ∈ C∞c (Rn+1)), (50)

for τ := τint + τ∂ . Because τ∂ is supported on ∂Q and τint on Ju ∩ Q with ∂Q ∩ Q = ∅, we have
‖τ‖L∞(Divj u) ≤ Mτ . We may therefore conclude from (50) that any weak* limit v ∈ D′(Rn+1) of

a subsequence of {vi}∞i=0 with vi ∈ F2εi(I
i, uεi), satisfies v ∈ F (I, u). This concludes the proof of

the first part of the proposition.
It remains to study the case with {Ii}∞i=0 solutions to the classical transport equation with

initial condition τ i0 and velocity field uεi . Regarding this, we observe from (49) that τ = τ∂ = τ0

on {0} × Ω since τ i|({0} × Ω) = τ i0
∗⇀ τ0 weakly* in L∞({0} × Ω). This completes the proof.

Remark 3. The above outer-semicontinuity results prove some degree of stability of the inclusion
0 ∈ F (I, u), however largely ignoring any “initial conditions on discontinuities in space-time” for I.
As this topic merits some more discussion, we will return to it in Remark 5 following our existence
theorem.

3.3. A technical lemma

We will need the following lemma for the existence and uniqueness results to follow. One of its
consequences is that even without assuming I to be of bounded variation, solutions I of 0 ∈ F (I, u)
(when Hn(Ju) < ∞) have one-sided Lebesgue limits on Ju when u is not parallel to Ju. To state
the lemma, and for later use, we define

P±u := {x ∈ Ju | 〈u±(x),±νJu(x)〉 > 0}, and (51)

N±u := {x ∈ Ju | 〈u±(x),±νJu(x)〉 < 0}. (52)
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Lemma 3. Suppose F (I, u; τ) = 0 for some I ∈ XI , u ∈ Xu, and τ ∈ L1(Divj u). Then the
one-sided Lebesgue limits I± exist Hn-a.e. on P±u ∪ N±u , and (Iu)± = I±u± (a.e.). Moreover,
defining I± arbitrarily on Ju \ (N±u ∪ P±u ), we have Tr±(Iu, Ju) = I±〈u±, νJu〉, and

τ〈u+ − u−, νJu〉 = 〈I+u+ − I−u−, νJu〉 Hn-a.e. on Ju. (53)

Proof. First of all, since u is of bounded deformation, we observe that Tr±(u, Ju) = 〈u±, νJu〉 on
Ju (Hn-a.e.); see [1]. Next we note that the measures I div uLn+1 and τ Divj u are bounded under
present assumptions. Hence it follows from F (I, u; τ) = 0 that Div(Iu) is a bounded measure. We
may therefore apply [13, Theorem 6.2] to show that I± exists Hn-a.e. on Ju when Tr±(u, Ju) 6= 0,
i.e., on P±u ∪N±u . In fact

I± = Tr±(Iu, Ju)/Tr±(u, Ju) Hn-a.e. on P±u ∪N±u . (54)

Since u and I are bounded, and u± and I± exist, it now follows easily from the definition (6) of
the one-sided Lebesgue limit that (Iu)± = I±u± on P±u ∪N±u (Hn-a.e.).

It remains to show (53). It follows from (54) that

Tr±(Iu, Ju) = I±〈u±, νJu〉 Hn-a.e. on P±u ∪N±u . (55)

Next we deduce from, e.g., [13, Theorem 4.2] (see (116)), that Tr±(Iu, Ju) = 0 when Tr±(u, Ju) = 0.
That is to say

Tr±(Iu, Ju) = 0 Hn-a.e. on Ju \ (N±u ∪ P±u ). (56)

Finally, minding that F (I, u; τ) = 0, we have Div(Iu)xJu = τ Divj u. Therefore, e.g., [13, Propo-
sition 3.4] shows that

τ Divj u = Div(Iu)xJu = (Tr+(Iu, Ju)− Tr−(Iu, Ju))HnxJu. (57)

Defining I± arbitrarily on Ju \ (N±u ∪ P±u ), we now deduce (53) from (55)–(57).

3.4. Existence

We now provide a weak existence result, based on the approximation of Theorem 3. Of course,
any constant function I is always a solution to 0 ∈ F (I, u) given u ∈ Xu and no boundary
conditions. In Theorem 5 below, we show that we can at least in a very weak distributional sense,
control the traces of I ∈ XI on the one-sided “source parts” (see Figure 2)

L±u := P±u ∩ Jdiv
u (58)

of the jump set, where P±u is defined in (51), and

Jdiv
u := {x ∈ Ju | 〈u+(x)− u−(x), νJu(x)〉 6= 0}.

For simplicity, here and throughout this section, we assume without loss of generality that νJu is
chosen continuously along each of the at most countably many C1 surfaces {Γi}∞i=1 containing Ju
(The choice is to be approximately continuous on each surface Γi over the Hn-negligible set where
these surfaces intersect.)

We begin with an existence result for more regular functions u. Although long and tedious to
prove, the proposition is rather obvious and most of the arguments quite standard for the transport
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Figure 2: The “source parts” L±u of Ju.

equation, although some changes in techniques are in order, because we need to piece together the
solution from flows originating from multiple surfaces. We have, however, been unable to find an
existing directly applicable result, so we provide an almost self-contained proof, skimming over
some of the arguments that follow exactly as in the classical case. Most of the work in the long
proof lies in showing that (Div(Iu)− I div u)x(J \ Jdiv

u ) = 0.

Proposition 2. Suppose u = (1, b) ∈ W∞(Rn+1) ∩ Xu. Let Y ± ∈ L∞MI
(L±) for some MI ≥ 0

and Borel sets L± ⊂ L±u . Then there exists a solution I ∈ L∞MI
(ΩT ) and τ ∈ L1(Divj(u)) to

F (I, u; τ) = 0 with I± = Y ± on L± and I+ = I− on Jdiv
u \ (L+ ∪ L−).

Proof. We divide the proof into four steps: (Step 1) Construction of flows X± and of I, (Step
2) showing that 0 ∈ F (I, u) holds along with (Step 3) I± = Y ± on L±, subject to (Step 4) the
properties (73), (76), and (75) of the auxiliary maps h and g. We begin, however, by establishing
some more notation used throughout the proof. First of all, we denote by J the discontinuity set
in the definition of W∞(Rn+1), with normal νJ (chosen continuously, as in the discussion above).
We have Ju ⊂ J , but this inclusion may be strict, even satisfying Hn(J \ Ju) > 0. Nevertheless,
by the definition of the jump set, we have

Jdiv
u = {x ∈ J | 〈u+(x)− u−(x), νJ(x)〉 6= 0}.

We then denote by J0 ⊂ J the set of x ∈ J where we have the existence of ρ > 0 such that the
ball B(x, ρ) is split into two open halves U±(x) by clU ∩Γ for one of the C1 surfaces Γ containing
J , and such that (clB(x, ρ) \ Γ) ∩ J = ∅. (The signs denoting sides are taken consistent with u±

and νJ .) Clearly J0 is open relative to cl J , and Hn(cl J \ J0) = 0. Finally, we will be extensively
working on the sets

P±0 := {x ∈ J0 | 〈u±(x),±νJ(x)〉 > 0},
N±0 := {x ∈ J0 | 〈u±(x),±νJ(x)〉 < 0}, and

Z±0 := J0 \ cl(P±0 ∪N
±
0 ).

Step 1: Construction. By classical results, at any point (t0, x0) ∈ ΩT \ cl J , there exists locally on
an interval around t0, a unique solution γ of

γ′(t) = b(t, γ(t)), γ(t0) = x0. (59)

Such a solution may further be uniquely extended to reach the set cl J at both ends; see, e.g., [6].
(Recall that J includes the initial and final boundaries {0, T} × Ω, as well as other parts of ∂ΩT
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where u is not orthogonal to the normal of ∂ΩT .) At each (t0, x0) ∈ J0, on the other hand, we may
find unique solutions γ+ and γ− to (59) in U+(t0, x0) and U−(t0, x0) (choosing in (59) (1, b) = u±

on J0). Therefore, at any (t0, x0) ∈ (ΩT \ cl J) ∪ (P±0 ∪ N
±
0 ), we may identify a unique curve

γ±(t0,x0) : [a, q] → Rn satisfying (59) on some interval [a, q) := [a±(t0, x0), q±(t0, x0)) 3 t0, and, as
we will show shortly, the inclusions

γ±(t0,x0)((a, q)) ⊂ ΩT \ cl J (60)

γ±(t0,x0)(a) ∈ cl J \ ((N+
0 ∪ Z

+
0 ) ∩ (N−0 ∪ Z

−
0 )), and (61)

γ±(t0,x0)(q) ∈ cl J \ ((P+
0 ∪ Z

+
0 ) ∩ (P−0 ∪ Z

−
0 )). (62)

Moreover, γ+
(t0,x0) = γ−(t0,x0) if (t0, x0) 6∈ cl J .

To establish (61), (62), we make the following observations: We let (t, x) ∈ P+
0 , and set

z := νJ(t, x). Observe that by taking δ > 0 small enough, we may assume 〈z, u(y)〉 > 0 for
y ∈ U+(t, x). Suppose then that we have a solution γ of (59) in U+(t, x), defined on (t0, t], and
satisfying γ(t) = x. We then have

〈z, (t, x)− (s, γ(s))〉 = 〈z,
∫ t

s
u(r, γ(r)) dr〉 > 0 for s ∈ (t0, t).

In particular, lims↗t〈z, (t, x) − (s, γ(s))〉/(t − s) = 〈z, u+(t, x)〉 > 0. On the other hand, mind-
ing that −z is the normal to the tangent cone of U+(t, x) at (t, x), we have lims↗t〈z, (t, x) −
(s, γ(s))〉/(t − s) ≤ 0. This contradiction shows that no solution can reach (t, x) ∈ P+

0 from
U+(t, x). Next, we note that any solution to (59) in clU+(t0, x0) with (t0, x0) ∈ Z+

0 will locally
stay on the manifold Z+

0 . This is because the field u+ on Z+
0 is locally orthogonal to the normal,

so there is a solution curve γ on the manifold, and solutions on clU+ are unique. Again this
shows that no solution can reach (t, x) ∈ Z+

0 from U+(t, x). As similar results hold on U−(t, x) for
(t, x) ∈ P−0 and (t, x) ∈ Z−0 , we conclude with (62). Similarly, working with N±0 and traversing γ
“in reverse” we establish (61).

Let us now set
G± :=

⋃
{(t, q±(t, x))× {(t, x)} | (t, x) ∈ P±0 }.

Then, based on what we have shown so far, we may define on G+ and G− the respective flows X+

and X−, satisfying at (t, (t0, x0)) ∈ G± the conditions

∂tX
±(t, (t0, x0)) = b±(t,X±(t, (t0, x0))), (63)

X±(t0, (t0, x0)) = x0, and

X±(q±(t, x), (t0, x0)) ∈ cl J \ ((P+
0 ∪ Z

+
0 ) ∩ (P−0 ∪ Z

−
0 )).

If we now set
E± := {(t,X(t, (t0, x0))) | (t, (t0, x0)) ∈ G±},

then E+ ∩ E− = ∅, and by (61), Ω \ (E+ ∪ E− ∪ J0) consists of points (t, x) with γ±(t,x)(a(t, x)) in

the Hn-negligible sets clJ \ (P±0 ∪ N
±
0 ∪ Z

±
0 ). Minding that we want to show the existence of I

with traces Y ± on L±, we may therefore largely limit our attention to the sets E+ an E−.
Before defining I shortly, we introduce the auxiliary maps

h±(t, x) :=
(
a±(t, x), γ±(t,x)(a

±(t, x), x)
)
, and

g±(t, x) :=
(
q±(t, x), γ±(t,x)(q

±(t, x), x)
)
.
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These give the initial and final points in space-time of the solution curve γ±(t,x). Observe that

g±(t, x) =
(
q±(t, x), X±(q±(t, x), (t, x))

)
on P±0 . Also h±(t, x) = [X±(t, · )]−1(x) when (t, x) ∈ E±,

but this does not apply when t = q±(t, x). Moreover, on ΩT \cl J we have f+ = f− for f = a, q, g, h.
We therefore often drop the sign superscript when it makes no difference.

Finally, we set

I(t, x) :=


Ỹ +(h+(t, x)), (t, x) ∈ E+ ∪ P+

0 ,

Ỹ −(h−(t, x)), (t, x) ∈ E− ∪ (P−0 \ P
+
0 ),

0, otherwise.

(64)

Clearly then I ∈ L∞MI
(ΩT ) when the initial data Ỹ is defined recursively by

Ỹ ±(t, x) :=


Y ±(t, x), (t, x) ∈ P±0 ∩ L±,
Ỹ +(h∓(t, x)), (t, x) ∈ (P±0 \ L±) ∩N∓0 ∩ g+(P+

0 ),

Ỹ −(h∓(t, x)), (t, x) ∈ (P±0 \ L±) ∩N∓0 ∩ g−(P−0 ),

0, elsewhere on cl J.

(65)

Step 2: Satisfaction of the transport equation. We now have to show that F (I, u; τ) = 0 for a
choice of τ ∈ L1(Divj u). So we pick a test function ϕ ∈ C∞c (Rn+1), and observe, first of all, that
the definition (64) yields∫

ΩT \(E+∪E−)
〈∇ϕ, Iu〉 dLn+1 +

∫
ΩT \(E+∪E−)

ϕI div u dLn+1 = 0. (66)

For the remainder of this step of the proof, we study these integrals on E+ and E−. To do so, we
have to use the C1 parametrisation of J0. We therefore choose a side ] ∈ {+,−}, and let P ⊂ P ]0
be such that there exists an open set V ⊂ Rm and a one-to-one C1 Lipschitz function f : V → P .
We then define

Xf (t, ξ) := X](t, f(ξ))

on
Gf :=

⋃
{(t, q](t, x))× {ξ} | (t, x) = f(ξ), ξ ∈ V }.

To improve the legibility of forthcoming formulae, we also write af := a] ◦ f , and qf := q] ◦ f .
Observe that af (ξ) = t when f(ξ) = (t, x), so, in particular, Xf (af (ξ), ξ) = f(ξ) on V . We then
set

A := {(t,X](t, (t0, x0)) | (t0, x0) ∈ P, t ∈ (t0, q
](t0, x0))}

= {(t,Xf (t, ξ)) | ξ ∈ V, t ∈ (af (ξ), qf (ξ))} ⊂ E].
(67)

Next, from, e.g., [6], we find that γ(t0,x0)(t) depends continuously on the initial data (t0, x0) =
f(ξ) for t ∈ (af (ξ), qf (ξ)). Therefore, in particular, Xf (t, ξ′) for ξ′ close to ξ is defined when
t ∈ (af (ξ), qf (ξ)). One may then show, following the arguments in the classical case (that we skip;
see, e.g., [24] for a general presentation, or [25] for a short proof for the transport equation), that
Xf ∈ C1(Gf ), and

∂tJn[∇Xf (t, · )(ξ)] = (div u)(t,Xf (t, ξ)) Jn[∇Xf (t, · )(ξ)] on Gf . (68)
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Moreover, from (63) we deduce for ϕ ∈ C∞c (Rn+1) that

〈(∇(t,x)ϕ)(t,Xf (t, ξ)), u(t,Xf (t, ξ))〉 = ∂t[ϕ(t,Xf (t, ξ))] on Gf . (69)

An application of the area formula on the transformation Xf (t, · ) together with (69) now allow
us to calculate∫

A
〈∇ϕ, Iu〉 dLn+1 =

∫ T

0

∫
Ω

(χA〈∇ϕ, u〉)(t, x) Ỹ ](h(t, x)) dx dt

=

∫ T

0

∫
V

(χA〈∇ϕ, u〉)(t,Xf (t, ξ)) Ỹ ](f(ξ)) Jn[∇Xf (t, · )(ξ)] dξ dt

=

∫
V

∫ qf (ξ)

af (ξ)
∂t[ϕ(t,Xf (t, ξ))] Jn[∇Xf (t, · )(ξ)] dt Ỹ ](f(ξ)) dξ.

Likewise, we deduce∫
A
ϕI div u dLn+1 =

∫ T

0

∫
Ω

(χAϕdiv u)(t, x) Ỹ ](h(t, x)) dx dt

=

∫
V

∫ qf (ξ)

af (ξ)
ϕ(t,Xf (t, ξ)) (div u)(t,Xf (t, ξ)) Jn[∇Xf (t, · )(ξ)] dt Ỹ ](f(ξ)) dξ.

Integration by parts and an application of (68) now establishes∫
A
〈∇ϕ, Iu〉 dLn+1 +

∫
A
ϕI div u dLn+1

=

∫
V
ϕ(t,Xf (t, ξ)) Jn[∇Xf (t, · )(ξ)]

∣∣∣qf (ξ)

t=af (ξ)
Ỹ ](f(ξ)) dξ.

=

∫
V
ϕ(g](f(ξ))) Jn[∇Xf (qf (ξ), · )(ξ)] Ỹ ](f(ξ)) dξ

−
∫
V
ϕ(f(ξ)) Jn[∇Xf (af (ξ), · )(ξ)] Ỹ ](f(ξ)) dξ =: O2 −O1. (70)

Since (t,Xf (t, ξ)) at t = qf (ξ), af (ξ) is on the the discontinuity set cl J , here Jn[∇Xf (qf (ξ), · )(ξ)]
and Jn[∇Xf (af (ξ), · )(ξ)] have to be understood as traces with respect to time. Indeed, minding
(68), we can for any t0 ∈ (af (ξ), qf (ξ)) write

Jn[∇Xf (t, · )(ξ)] = Jn[∇Xf (t0, · )(ξ)] +

∫ t

t0

(div u)(s,Xf (s, ξ)) Jn[∇Xf (s, · )(ξ)] ds. (71)

Observe that it follows from 70 that Div(Iu)−I div u is concentrated on J . We however need to
show concentration on Jdiv

u , for which we need to compare the partial solutions for varying source
sets P = f(V ) covering P±0 . To do so, we have to calculate the jacobians in the two terms O1 and
O2. This forms the bulk of the proof of the present proposition.

Regarding O1, an application of the area formula on the transformation f yields

O1 =

∫
P
ϕ(t, x)

Jn[∇Xf (t, · )(f−1(t, x))]

Jn[∇f(f−1(t, x))]
Ỹ ](t, x) dHn(t, x). (72)
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Now, observe that we may write f(ξ) = h(t0, Xf (t0, ξ)) when t0 ∈ (af (ξ), qf (ξ)). (Recall that
h+ = h− in ΩT \cl J .) Minding that Xf (t0, f

−1(t, x)) = X](t0, (t, x)), we obtain from the definition
of Jn that

Jn[∇f(f−1(t, x))] = Jn[∇h(t0, · )(X](t0, (t, x))]Jn[∇Xf (t0, · )(f−1(t, x))], ((t, x) ∈ P ),

provided that ∇h(t0, ·) exists at X(t0, (t, x)) on Xf (t0, V ). We claim that this is indeed the case,
and show in Step 4 that

lim
t0↘t
Jn[∇h(t0, · )(X(t0, (t, x)))] = 1/|〈u](t, x), νJ(t, x)〉|, ((t, x) ∈ P ). (73)

Minding (71) and that ]〈u], νJ〉 > 0 on P ⊂ P ]0 , (73) and (72) give

O1 = ]

∫
P
ϕ(t, x)〈u](t, x), νJ(t, x)〉Ỹ ](t, x) dHn(t, x). (74)

Next we study the termO2 of (70). We now intend to use the area formula on the transformation
g] ◦ f . It is not, however, generally Lipschitz, as parts of the flow can end up on different surfaces.
But consider a point ξ ∈ V such that g](f(ξ)) ∈ N [

0 for some [ ∈ {+,−}, and let t0 ∈ (af (ξ), qf (ξ)).
Then, as discussed in the beginning of the step, Xf (t0, ·) is locally C1 at ξ, hence locally Lipschitz.
Moreover, we will show in Step 4 that

The map g(t0, ·) is locally C1 at Xf (t0, ξ) when t0 and ξ are as above. (75)

Thus g] ◦ f = g(t0, Xf (t0, ·)) is locally Lipschitz at such ξ ∈ V . From the uniqueness of solutions

γ, discussed before (60)–(62), it follows that g]|P ]0 is one-to-one in a neighbourhood of f(ξ). This
allows us to apply the Vitali covering theorem on V to yield a disjoint family {V i}∞i=0 of open balls
such that Ln(V \

⋃
i V

i) = 0, and where g]|P i is a one-to-one (Lipschitz) map with inverse h[i

between P i := f(V i) and N i := g(P i) ⊂ N [i .
It now follows that

O2 =
∑
i

Oi2 :=
∑
i

∫
V i
ϕ(g](f(ξ))) Jn[∇Xf (qf (ξ), · )(ξ)] Ỹ ](f(ξ)) dξ

Similarly to (74), an application of the area formula on the transformation g] ◦ f now yields

Oi2 =

∫
N i

ϕ(t, x)
Jn[∇Xf (t, · )((f−1 ◦ h[i)(t, x)))]

Jn[∇(g] ◦ f)((f−1 ◦ h[i)(t, x))]
Ỹ ](h[i(t, x)) dHn(t, x).

Writing (g] ◦ f)(ξ) = g(t0, Xf (t0, ξ)) when t0 ∈ (af (ξ), qf (ξ)), yields again

Jn[∇(g] ◦ f)((f−1 ◦ h[i)(t, x))]

= Jn[∇g(t0, ·)(X](t0, h
[i(t, x)))]Jn[∇Xf (t0, · )((f−1 ◦ h[i)(t, x))], ((t, x) ∈ N i),

provided that ∇g(t0, ·)(X](t0, h
[i(t, x))) exists. Again, we claim that this is the case, and

lim
t0↗t
Jn[∇g(t0, ·)(X](t0, h

[i(t, x)))] = 1/|〈u[i(t, x), νJ(t, x)〉|, ((t, x) ∈ N i). (76)
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Minding that [i〈u[i , νJ〉 < 0 on N i ⊂ N [i
0 , it follows that

O2 =
∑
i

∫
N i

ϕ(t, x)(−[i)〈u[i(t, x), νJ(t, x)〉Ỹ ](h[i(t, x)) dHn(t, x)

=
∑

[∈{+,−}

[

∫
g](P )∩N[

0

ϕ(t, x)〈u[(t, x),−νJ(t, x)〉Ỹ ](h[(t, x)) dHn(t, x).
(77)

Provided that (73) and (76) hold along with (75), it follows from plugging (74) and (77) into
(70) that∫

A
〈∇ϕ, Iu〉 dLn+1 +

∫
A
ϕI div u dLn+1

= −
(
]

∫
P
ϕỸ ]〈u], νJ〉 dHn +

∑
[∈{+,−}

[

∫
N[

0∩g(P )
ϕ(Ỹ ] ◦ h[)〈u[, νJ〉 dHn

)
. (78)

Now, observe that the Vitali covering theorem again provides us with a disjoint family of sets
{P i}∞i=0 such that Hn(P ]0 \

⋃
i P

i) = 0, and there exist open sets V i ⊂ Rm and one-to-one C1

Lipschitz maps f i : V i → P i. The corresponding sets Ai defined by (67) then cover almost all of

E], due to the uniqueness of solution curves γ on P ]0 . Therefore, recalling (66), we may deduce
from (78) that

K := −
(∫

Ω
〈∇ϕ, Iu〉 dLn+1 +

∫
Ω
ϕI div u dLn+1

)
=

∑
]∈{+,−}

(
]

∫
P ]0

ϕỸ ]〈u], νJ〉 dHn +
∑

[∈{+,−}

[

∫
N[

0∩g(P
]
0 )
ϕ(Ỹ ] ◦ h[)〈u[, νJ〉 dHn.

)

Exchanging orders of the sums on the second term, we get

K =
∑

]∈{+,−}

]

(∫
P ]0

ϕỸ ]〈u], νJ〉 dHn −
∑

[∈{+,−}

[

∫
N−]0 ∩g(P [0 )

ϕ(Ỹ [ ◦ h−])〈u−], νJ〉 dHn
)
.

By an application of (65) we may restrict attention to L± = P±u ∩ Jdiv
u , yielding

K =
∑

]∈{+,−}

]

(∫
P ]0∩L]

ϕY ]〈u], νJ〉 dHn −
∑

[∈{+,−}

[

∫
g(P [0 )∩L]∩P ]0

ϕ(Ỹ [ ◦ h−])〈u−], νJ〉 dHn
)

=

∫
Jdiv
u

ϕ
∑

]∈{+,−}

]

(
χ
P ]0
Y ]〈u], νJ〉 −

∑
[∈{+,−}

[χ
g(P [0 )∩P ]0

(Ỹ [ ◦ h−])〈u−], νJ〉
)
dHn.

Since Y ± and u are bounded and Hn(J) < ∞, we deduce that K =
∫
ϕτ dDivj u for some

τ ∈ L1(Divj u) (independent of ϕ). This shows F (I, u; τ) = 0.

Step 3: Traces. Let (t, x) ∈ P+
0 and consider a small neighbourhood U := B((t, x), δ) as in the

beginning of the proposition, split into open halves U+ := U+(t, x) and U− := U−(t, x) on different
sides of cl J ∩ U . Let us set w := uχU+ . If we repeat Step 2 with I and w instead of u, and a
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J

(t, x)

g(t0, y)

(t0, y0) (t0, y)

(t, γ(t0,y)(t))

U [(t, x) ∩B((t, x), δ3)

Figure 3: The situation in the beginning of Step 4 of Proposition 2.

test function ϕ ∈ C∞c (U), the term O2 will be zero. We may, in fact, assume that δ > 0 is small
enough that cl J ∩ U is the image P of a single C1 map f , and U+ ⊂ A. From (74) and (70), we
then obtain ∫

U
〈∇ϕ, Iw〉 dLn+1 +

∫
U
ϕI divw dLn+1 = −

∫
cl J∩U

ϕỸ +〈u+, νJ〉 dHn,

or ∫
U+

〈∇ϕ, Iu〉 dLn+1 +

∫
U+

ϕI div u dLn+1 = −
∫

cl J∩U
ϕỸ +〈u+, νJ〉 dHn.

This shows that Div IuxU+ = I div uLn+1, because clJ ∩ U does not intersect U+. Hence the
normal trace of Iu on the boundary ∂U+ satisfies

Tr(Iu, ∂U+)(ϕ) =

∫
U+

〈∇ϕ, Iu〉 dLn+1 +

∫
U+

ϕdDiv(Iu) = −
∫

cl J∩U
ϕỸ +〈u+, νJ〉 dHn.

Consequently, we deduce that the normal trace on the positive side of P+
0 , which is in the interior

of U+, satisfies
Tr+(Iu, P+

0 ) = Ỹ +〈u+, νJ〉HnxP+
0 .

But Proposition 3 shows that Tr+(Iu, P+
0 ) = I+〈u+, νJ〉HnxP+

0 . Since 〈u+, νJ〉 > 0 on P+
0 , it

follows that I+ = Ỹ + on P+
0 . In particular, since L+ \ P+

0 is Hn-negligible, we have I+ = Y +

a.e. on L+. This is what we had to show.
Repeating the arguments above on the “minus side” U− of P−0 yields I− = Y − on L−, showing

that I satisfies the trace claim of the proposition.

Step 4: Differentiability properties of g and h. To complete the proof of the present proposition,
it remains to show the Jacobian formulae (73) and (76) along with (75). As the proof of (73) is
analogous to that of (76), merely traversing the flow backwards, we only show the latter. See also
[6] for other considerations of similar nature.

Let then (t, x) ∈ N [
0, and (t0, y0) ∈ ΩT \ cl J with t0 < t be such that (t, x) = g(t0, y0).

Denote ū := u(t, x), and ν̄ := νJu(t, x). Let V0 be an open neighbourhood of y0 such that t0 ∈
(a(t0, y), q(t0, y)) when y ∈ V0. (Such a neighbourhood exists, as discussed in Step 2.) Also write

ty = q(t0, y) and xy = g(t0, y), and set V ↑0 := {y ∈ V0 | ty ≥ t}, and V ↓0 := V0 \ V ↑0 . For y ∈ V ↑0 , we
get (see Figure 3)

g(t0, y)− g(t0, y0) = g(t, γ(t0,y)(t))− (t, x), (79)
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where we have to mind the correct side [ at (t, x). Given ε > 0, we will show below that there exist
δ3 > 0 and ε′ ∈ (0, ε) such that when (t, z) ∈ U [(t, x) ∩B((t, x), δ3), we can (for fixed z) write

g(t, z)− (t, x) =

(
id− ũ⊗ ν̃

〈ũ, ν̃〉

)
(0, z − x) (80)

for some
ũ ∈ B(ū, ε′), and ν̃ ∈ B(ν̄, ε′), ‖ν̃‖ = 1, (81)

all of which satisfy ∥∥∥∥ ū⊗ ν̄〈ū, ν̄〉
− ũ⊗ ν̃
〈ũ, ν̃〉

∥∥∥∥ ≤ ε. (82)

We may also write

γ(t0,y)(t)− x = d0(y) := (y − y0) +

∫ min{t,ty}

t0

u(s, γ(t0,y)(s))− u(s, γ(t0,y0)(s)) ds. (83)

On the other hand, for y ∈ V ↓0 , we may similarly to (79) write

g(t0, y)− g(t0, y0) = (ty, xy)− g[(ty, γ(t0,y0)(ty)). (84)

Also analogously to (80), it can be shown that there exists δ4 > 0 such that whenever (tx, xy), (tx, z) ∈
U [(t, x) ∩B((t, x), δ4), we have

(ty, xy)− g[(ty, z) =

(
id− ũ⊗ ν̃

〈ũ, ν̃〉

)
(0, xy − z) (85)

for some ũ and ν̃ satisfying (81) and (82). Observing that also

xy − γ(t0,y0)(ty) = d0(y),

it follows from (79), (80) and (84), (85) that in some open neighbourhood V ⊂ V0 of y0, we have

g(t0, y)− g(t0, y0) =

(
id− ũ⊗ ν̃

〈ũ, ν̃〉

)
(0, d0(y)) (86)

for some ũ and ν̃ dependent on y and satisfying (81) and (82). Since ε > 0 was arbitrary, it
easily follows, using (82), that g(t0, ·) is continuous at y0. In particular q(t0, ·) = 〈(1, 0), g(t0, ·)〉 is
continuous at y0. By repeating the arguments above with other y0 ∈ V , we obtain continuity on
V .

To show differentiability, mind that, by assumption, u is smooth in ΩT \ cl J . Moreover, since
γ(t0,y0)(s) 6∈ cl J , by classical results, y 7→ γ(t0,y)(s) is locally Lipschitz and C1 for s ∈ (t0, t) (again,
similarly to as discussed in Step 2). By the continuity of ty = q(t0, y) on V , shown above, it thus
follows that d0 is C1 on a neighbourhood V ′ ⊂ V of y0. Since ε > 0 was arbitrary, it is then easy
to deduce from (86), using (82), that

∇g(t0, ·)(y0) = H̄∇d0(y0), where H̄(v) :=

(
id− ū⊗ ν̄

〈ū, ν̄〉

)
(0, v).
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By the already observed continuity of g(t0, ·) on V , we deduce that ū = u(g(t0, y0)) and v̄ =
νJu(g(t0, y0)) depend continuously on y0 in V . We can therefore conclude that g(t0, ·) is locally C1,
so (75) holds. Moreover, by application of some elementary row transformations and the Cauchy-
Binet formula, one can show that Jn[H̄] = 1/|〈ū, ν̄〉|. Therefore, observing that limt0↗t∇d0(y0) =
id (where y0 varies with t0, converging to x), we obtain (76).

To complete the proof, we now have to show (80). Since the proof will be of local nature, to
ease the notation, we translate the problem so that (t, x) = 0. Since 0 = (t, x) ∈ N ′ ⊂ N [

0, we may
assume that (0, y) ∈ U [(0) ⊂ B(0, δ), where δ is as in the beginning of the proposition. Let us also
observe that

g[(0, y) = (0, y) +

∫ q[(0,y)

0
u(s, γ(0,y)(s)) ds. (87)

Let then ε > 0 be arbitrary. Since 〈ū, ν̄〉 6= 0, there exists ε′ ∈ (0, ε) such that (82) holds
whenever (81) does. There also exists δ1 ∈ (0, δ) such that ‖u(s, y) − ū‖ ≤ ε′ when (s, y) ∈
U [(0) ∩B(0, δ1). Moreover, there exists δ2 ∈ (0, δ1) such that

cl J ∩B(0, δ2) ⊂ Kε′ :=
⋃
{ν̃⊥ | ν̃ ∈ B(ν̄, ε′), ‖ν̃‖ = 1}.

Let us abbreviate q(y) := q[(0, y). Applying (87), we now have

g[(0, y) = (0, y) + q(y)ũ for some ũ ∈ B(ū, ε′), (88)

as long as we have (s, γ(0,y](s)) ∈ U[(0) ∩B(0, δ1) for s ∈ [0, q(y)). But this follows if q(y) is small
enough that

(0, y) + q(y)ũ ∈ B(0, δ1) for all ũ ∈ B(ū, ε′). (89)

To find q(y), we want to solve (0, y) + q(y)ũ ∈ cl J . Approximating cl J by Kε, we have

(0, y) + q(y)ũ ∈ ν̃⊥ for some ν̃ ∈ B(ν̄, ε), ‖ν̃‖ = 1.

Taking the inner product on both sides by ν̃, we obtain

q(y) = −〈(0, y), ν̃〉/〈ũ, ν̃〉. (90)

This is well-defined thanks to (82). Inserting q(y) into the condition (89), it becomes(
id− ũ⊗ ν̃

〈ũ, ν̃〉

)
(0, y) ∈ B(0, δ1).

By choosing δ3 ∈ (0, δ2) small enough, by (82), this can be made to hold for all (0, y) ∈ B(0, δ3) and
ν̃ and ũ satisfying (81). In consequence, (88) holds for (0, y) ∈ B(0, δ3). Minding the expression
(90) for q(y), and the translation of (t, x) to 0, this establishes (80), thus completing the proof.

We next state our main existence theorem. For the stronger version of it, bounding τ , we
assume boundedness on Jdiv

u from

κu(x) :=
|〈u+(x), νJu(x)〉|+ |〈u−(x), νJu(x)〉|
|〈u+(x), νJu(x)〉 − 〈u−(x), νJu(x)〉|

. (91)

What this roughly says is that if Divj u approaches zero on Jdiv
u , then the normal traces 〈u±, νJu〉

must also approach zero at a similar rate.
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Theorem 5. Suppose u ∈ Xu with Eu ∈ L2(ΩT ;R(n+1)×(n+1)) and Hm−1(Ju) < ∞. Given
Y ± ∈ L∞MI

(L±u ) for some MI ≥ 0, there then exist I ∈ XI and τ ∈ L1(Divj u) with F (I, u; τ) = 0
and

τ Divj u =
〈
Ỹ +u+ − Ỹ −u−, νJu

〉
HnxJu (92)

for some Ỹ ± ∈ L∞MI
(Ju) satisfying Ỹ ± = Y ± on L±u (a.e.).

Additionally, if for some M ≥ 1 we have κu ∈ L∞M (Jdiv
u ), then τ ∈ L∞MIM

(Jdiv
u ).

Proof. We take an approximating sequence {ui}∞i=0 ⊂ W∞(ΩT )∩L∞Mu
(ΩT ;Rn+1) of u, as given by

Theorem 3, extending ui outside ΩT by zero. We then have

ui → u strongly in L2(Ω;Rn+1), (93)

Eui → Eu strongly in L2(Ω;R(n+1)×(n+1)), (94)

‖(ui)± − u±‖L1(Ju∪Jui ;Rn) → 0, and (95)

Hn(Jui∆Ju)→ 0. (96)

Observe, moreover, from the finite element construction in the proof of Theorem 3 (Lemma 2),
that the (1, b) structure of u is preserved, i.e., ui ∈ Xu.

Next we construct a solution to the (extended) transport equation with velocity field ui. For
initial/source data, we set

(Y i)± := Y ± on (Li)± := L±
ui
∩ L±u . (97)

Proposition 2 then gives a solution pair Ii ∈ XI and τ i ∈ L1(Divj ui) to F (Ii, ui; τ i) = 0 with
(Ii)± = (Y i)± on (Li)±, and (Ii)+ = (Ii)− on Jui \ Li, where we denote Li := (Li)+ ∪ (Li)−. For
later use, we also introduce the analogous notation Lu := L+

u ∪ L−u .
We cannot use Theorem 4 as this point, because {τ i}∞i=0 may not be bounded in L∞, and

because {Ii}∞i=0 may not converge pointwise-a.e. The sequence {Ii}∞i=0 however is bounded in
L∞(ΩT ), so we may assume it weak* convergent to some I ∈ L∞(ΩT ). Applying (93) and (94), it
therefore follows for any ϕ ∈ C∞c (Rn+1) that

−
∫
Rn+1

〈∇ϕ, Iiui〉 dx−
∫
Rn+1

ϕIi div ui dx→ −
∫
Rn+1

〈∇ϕ, Iu〉 dx−
∫
Rn+1

ϕI div u dx. (98)

It remains to study the behaviour of the term τ i Divj ui of F (Ii, ui; τ i). By Proposition 3, we
have

τ i Divj ui = Divj(Iiui) =
〈
(Ii)+(ui)+ − (Ii)−(ui)−, νJui

〉
HnxJui , (99)

where (Ii)± exist on Jui when 〈(ui)±, νJui 〉 6= 0, and are defined arbitrarily otherwise. Minding

that Ii ∈ L∞MI
(ΩT ), we extend (Ii)± to L∞MI

(Ju ∪ Jui) by defining (Ii)± = 0 on Ju \ Jui . After

possibly switching to subsequences, unrelabelled, we may then assume the sequences {(Ii)±|Ju}∞i=0

convergent weakly* in L∞(Ju) to some Ỹ ± ∈ L∞MI
(Ju). Moreover, by application of Lemma 7 in the

Appendix (with A = L±u , µ = HnxL±u , and vi = min{max{0, 〈(ui)±, νJu〉}, |〈(ui)± − (ui)±, νJu〉|}),
we obtain

Hn(L±u \ (Li)±) = Hn(L±u \ L±ui)→ 0, (i→∞). (100)

(The converse, Hn(L±
ui
\ L±u ) → 0, may not hold.) Therefore, minding that (Ii)± = (Y i)± = Y ±

on (Li)±, we deduce that Ỹ ± = Y ± on L±u , as required by the lemma.
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Employing (95), we now find (see, e.g., [21])

(Ii)±(ui)± ⇀ Ỹ ±u± weakly in L1(Ju;Rn+1), (i→∞). (101)

Since, by (96), Hn(J iu∆Ju)→ 0, and Ii and ui are bounded, we deduce for all ϕ ∈ Cc(Rn+1) that∫
ϕτ i dDivj ui =

∫
Jui

ϕ
〈
(Ii)+(ui)+ − (Ii)−(ui)−, νJui

〉
dHn

→
∫
Ju

ϕ
〈
Ỹ +u+ − Ỹ −u−, νJu

〉
dHn.

(102)

To see this, observe that the integral on the left may be written as the sum of integrals over Ju
and Jui \ Ju, due to the extension of (Ii)± to Ju \ Jui by zero.

Next, we observe that by our choice (97) of (Li)± and (Y i)±, we may refine (99) into

τ i Divj ui =
〈
(Ii)+(ui)+ − (Ii)−(ui)−, νJui

〉
HnxLi + Ĩi Divj uix(Jui \ Li), (103)

for some Ĩi ∈ L∞MI
(Jui \ Li). Calculating that

(Jui \ Li)∆(Ju \ Lu) ⊂ (Ju∆Jui) ∪ (Lu \ Li),

due to the choice (97) of Li ⊂ Lu, we deduce from (96) and (100) that

Hn((Jui \ Li)∆(Ju \ Lu))→ 0.

By this and (95), it follows that

Divj uix(Jui \ Li)→ Divj ux(Ju \ Lu) in total variation, (i→∞).

Because Ĩi ∈ L∞MI
(Jui \ Li), following the proof of Theorem 4, we then observe the existence of

τ1 ∈ L∞MI
(Ju \ Lu) such that for an unrelabelled subsequence

Ĩi Divj uix(Jui \ Li) ∗⇀ τ1 Divj ux(Ju \ Lu) weakly* in M(Rn+1), (i→∞), (104)

We also have τ1 ∈ L1(Divj u), because, by the assumption P (u) <∞, we have Hn(Ju) <∞.
Regarding the first term on the right side of (103), we deduce from (101) and (100) that, again

after possibly moving to an unrelabelled subsequence〈
(Ii)+(ui)+ − (Ii)−(ui)−, νJui

〉
HnxLi ∗⇀

〈
Ỹ +u+ − Ỹ −u−, νJu

〉
HnxLu, (i→∞), (105)

weakly* in M(Rn+1). Recalling that Lu ⊂ Jdiv
u , we may write〈

Ỹ +u+ − Ỹ −u−, νJu
〉
HnxLu = τ2 Divj u (106)

for some Borel function τ2. In fact, since the assumption P (u) < ∞ implies Hn(Ju) < ∞, and
because both u± and Ỹ ± are bounded, we may conclude that τ2 ∈ L1(Divj u).

Let us now set τ := τ1 + τ2. Then τ ∈ L1(Divj u), and by combining the observations (103)–
(106), we find for all ϕ ∈ Cc(Rn+1) that∫

ϕτ i dDivj ui →
∫
ϕτ dDivj u. (107)
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Comparing (102) to (107), we deduce that (92) holds. Moreover, since F (Ii, ui; τ i) = 0, it follows
from (98) and (107) that F (I, u; τ) = 0.

We still have to consider the case κu ∈ L∞M (Jdiv
u ). We already showed that τ1 ∈ L∞MI

(Ju \ Lu).
For τ2, we may deduce from (106) that |τ2(x)| ≤MI |κu(x)| for x ∈ Lu. Hence ‖τ2‖L∞(Lu) ≤MIM ,

and so it follows that τ ∈ L∞MIM
(Jdiv
u ), as claimed. The proof can now be concluded.

Remark 4. We have not shown that the traces I± would equal Y ± on L±u , only that τ is of a
form that would be had if this were the case. From the construction it is apparent that if we
had the strict convergence ‖I − Ii‖L1(ΩT ) + ||DI|(ΩT )− |DIi|(ΩT )| → 0, in which case traces are
convergent, then this property would hold. Proposition 3 shows that the one one-sided Lebesgue
limits I± however exist on N±u ∪P±u , and (Iu)± = I±u±. Thus, in particular, 〈I+u+−I−u−, νJu〉 =
〈Ỹ +u+ − Ỹ −u−, νJu〉. From this it follows that I± = Ỹ ± when 〈u∓, νJu〉 = 0, and so the trace is
as requested, e.g., at the initial time t = 0.

Remark 5. One further remark is in order, regarding the stability of the condition 0 ∈ F (I, u).
All three, Theorem 4, Proposition 1, and the proof of Theorem 5 provide a stability result of one
type or the other. Theorem 4 is the strongest in the sense that the jump sets of ui may vary, but
in no way does it show the convergence of the traces of Ii on the jump parts L±u of the jump set.
Proposition 1 provides a stability result that is much stronger with regard to initial conditions, but
only for mollifier approximations of u. Finally, the proof of Theorem 5 provides a stability result
with regard to the relatively strong form of convergence (93)–(96). It still shows full stability with
regard to initial data, because at time zero 〈u−, νJu〉 = 0, but for sources on jumps in space-time
not satisfying a property of this type, the stability is somewhat weaker.

A limitation with the stability result in the proof of Theorem 5 is that the jump set is expected
to be mostly stationary. To overcome this, and to support more arbitrary approximating sequences
{ui}∞i=0, the techniques of the outer-semicontinuity proof of Theorem 4 and of Theorem 5 could be
combined. For example, by requiring that each κui ∈ L∞M (Jdiv

ui
), so that τ i are also bounded, we

could get (107) by using the techniques of Theorem 4, even when the jump sets Jui are not mostly
stationary. To get (102) in this case, we could require in advance

1. The weak* convergence of (Y i)±〈(ui)±, νJui 〉H
nxL±

ui
to Y ±〈u±, νJu〉HnxL±u , and

2. Weak* convergence of 〈(ui)±, νJui 〉H
nx(Jdiv

ui
\ L±

ui
) to 〈u±, νJu〉Hnx(Jdiv

u \ L±u ), along with
convergence of total variations.

Following the techniques of the outer-semicontinuity proof in Theorem 4 again, the latter condition
would then show the weak* convergence of a subsequence of (Ii)±〈(ui)±, νJui 〉H

nx(Jdiv
ui
\ L±

ui
) to

some (Ỹ )±〈u±, νJu〉Hnx(Jdiv
u \L±u ). Hence, by combining with the first condition, we would obtain

(102). Again comparing to (107) would then show stability of solutions in the weak sense (92).

3.5. Renormalisation and uniqueness

We finally study the uniqueness of solutions I to 0 ∈ F (I, u) subject to one-sided traces on
L±u . (At this point it is advisable to recall the definition of these sets from (58), as well as that
of Jdiv

u .) We begin by rewriting the condition F (I, u; τ) = 0 with respect to integral over time. A
Gronwall-type estimate then leads to a preliminary uniqueness result under positivity assumptions
on I and the bound

∫ T
0 ‖max{0, div b(t, ·)}‖L∞(Ω) dt <∞. This bound is akin to what is found in

other recent works [4, 5], although by div b(t, ·) we refer to the mere absolutely continuous part of
the distributional divergence Div b(t, ·). Finally, we do away with the positivity assumption with
the help of a renormalisation argument.
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Lemma 4. Let I ∈ XI , u ∈ Xu, and τ ∈ L1(Divj u) with F (I, u; τ) = 0. Denote It(x) := I(t, x),
and bt(x) := b(t, x), where u = (1, b). Then for all θ ∈ C∞c (R),

−
∫ T

0
θ′(t)

[∫
Ω
It dx

]
dt =

∫ T

0
θ(t)

[∫
Ω
It div bt dx

]
dt+

∫ T

0
θ(t)

[∫
τt dDivj bt

]
dt

+ θ(0)

∫
Ω
τ0 dx− θ(T )

∫
Ω
τT dx.

(108)

In particular, t 7→
∫
It dx is absolutely continuous on (0, T ).

Proof. Choose ψ ∈ C∞c (Rn) such that ψ = 1 in K c Ω. Set ϕ(x, t) := θ(t)ψ(x). Writing out
F (I, u; τ) = 0, we have

−
∫

ΩT
〈∇ϕ, Iu〉 d(t, x)−

∫
ΩT

ϕI div u d(t, x)−
∫
ϕτ dDivj u = 0.

Because ∇ϕ(x, t) = (θ′(t)ψ(x),∇ψ(x)θ(t)), we obtain

−
∫ T

0
θ′(t)

∫
Ω
ψIt dx dt−

∫ T

0
θ(t)

∫
Ω
〈∇ψ, Itbt〉 dx dt

−
∫ T

0
θ(t)

∫
Ω
ψIt div bt dx dt−

∫
θ(t)ψ(x)τ(t, x) dDivj u(t, x) = 0.

Employing the fact that ψ = 1 on K c Ω, this reduces into

−
∫ T

0
θ′(t)

∫
Ω
It dx dt−

∫ T

0
θ(t)

∫
Ω
It div bt dx dt−

∫
θ(t)τ(t, x) dDivj u(t, x) = 0.

Thus (108) follows if∫
θ(t)τ(t, x) dDivj u(t, x) =

∫ T

0
θ(t)

[∫
τt dDivj bt

]
dt+ θ(0)

∫
Ω
τ0 dx− θ(T )

∫
Ω
τT dx. (109)

To show (109), we will employ the Structure Theorem. Towards this end, we let (ξ0, . . . , ξn) be
the standard basis of Rn+1. Then Divj u =

∑n
i=0〈Ejuξi, ξi〉, where, according to Theorem 1, for

any ϕ ∈ C∞c (Rn+1), it holds

〈Ejuξ, ξ〉(ϕ) =

∫
ξ⊥

(∫
ϕ(y + tξ) dDju[y,ξ](t)

)
dHn(y). (110)

Additionally, for Hn-a.e. y ∈ ξ⊥, we have

Ju[y,ξ] = J
[y,ξ]
u,ξ = {t ∈ R | x = y + tξ ∈ Ju, 〈u+(x)− u−(x), ξ〉 6= 0}

as well as (u[y,ξ])±(t) = 〈u±(y+tξ), ξ〉 for all t ∈ J [y,ξ]
u,ξ . The normals are oriented so that 〈νJu , ξ〉 ≥ 0

if and only if νJ
u[y,ξ]

= 1. In particular, we may observe for Hn-a.e. y ∈ ξ⊥ that

Dju[y,ξ] = 〈(u[y,ξ])+ − (u[y,ξ])−, νJ
u[y,ξ]
〉H0xJu[y,ξ]

= 〈u+(y + tξ)− u−(y + tξ), ξ〉νJ
u[y,ξ]
H0xJ [y,ξ]

u,ξ .
(111)
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We now let ξ = ξ0 = (1, 0, . . . , 0). Then ξ⊥ = {0} × Rn. Because 〈u, ξ0〉 = 1 on ΩT , (111)
vanishes except at t = 0 or t = T for y ∈ {0} × Ω. Moreover, 〈u, ξ0〉 = 0 a.e. on Rn+1 \ ΩT . We
therefore have for y ∈ {0} × Ω that

Dju[y,ξ0] = 〈u+(y + 0ξ0), ξ0〉H0x{0} − 〈u−(y + Tξ0), ξ0〉H0x{T} = H0x{0} −H0x{T},

while Dju[y,ξ0] = 0 for Hn-a.e. y ∈ ξ⊥ \ ({0} × Ω). Here we have oriented νJu on {0, T} × Ω to
equal ξ0. Consequently, by application of (110), for ϕ ∈ Cc(Rn+1) and ϕs := ϕ(s, · ), we obtain

〈Ejuξ0, ξ0〉(ϕ) =

∫
Ω
ϕ0(ŷ) dŷ −

∫
Ω
ϕT (ŷ) dŷ.

On the other hand, when ξ = (0, ζ) ∈ {ξ1, . . . , ξn}, and y = (s, ŷ), we may write

u(y + tξ) = (1, b(s, ŷ + tζ)) and u[y,ξ] = (bs)
[ŷ,ζ].

Now note that it follows from [2, Proposition 3.4] that bs ∈ BD(Rn) for H1-a.e. s ∈ [0, T ]. Observe
also that ξ⊥ = R × ζ⊥. Therefore, applying (110) and Fubini’s theorem on u and bs, we find for
ϕ ∈ Cc(Rn+1) that

〈Ejuξ, ξ〉(ϕ) =

∫
ξ⊥

(∫
ϕ(y + tξ) dDju[y,ξ](t)

)
dHn(y)

=

∫ ∫
ζ⊥

(∫
ϕ(s, ŷ + tζ) dDj(bs)

[ŷ,ζ](t)

)
dHn−1(ŷ) ds

=

∫
〈Ejbsζ, ζ〉(ϕs) ds.

Thus,

Divj u(ϕ) =

n∑
i=0

〈Ejuξi, ξi〉(ϕ)

=

n∑
i=1

∫
〈Ejbsζi, ζi〉(ϕs) ds+ 〈Ejuξ0, ξ0〉(ϕ)

=

∫
Divj bs(ϕs) ds+

∫
Ω
ϕ0(ŷ) dŷ −

∫
Ω
ϕT (ŷ) dŷ.

(112)

This implies (109), completing the proof.

Remark 6. From (112) one may observe that the divergence of u is, in a sense, “absolutely
continuous in time” in (0, T ). The discontinuities at 0 and F correspond to the initial condition
and the “final result”, which are both subsumed into the “jump variable” τ .

We now have the following Gronwall estimate.

Lemma 5. Let I ∈ XI , u = (1, b) ∈ Xu, and τ ∈ L1(Divj u) with F (I, u; τ) = 0. Suppose∫ T
0 ‖max{0, div bt}‖L∞(Ω) dt <∞, and I ≥ 0. Defining η(t) :=

∫
It(x) dx, we then have

η(t) ≤ e
∫ t
0 ‖max{0,div bs}‖L∞(Ω) ds

[∫
Ω
τ0 dx+

∫ t

0

∫
τs dDivj bs ds

]
, t ∈ [0, T ]. (113)
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Proof. It follows from the absolute continuity assertion and (108) of Lemma 4 that

η′(t) =

∫
Ω
It div bt dx+

∫
τt dDivj bt for a.e. t ∈ (0, T ).

Employing the assumption I ≥ 0, we deduce

η′(t) ≤ ‖max{0, div bt}‖L∞(Ω)η(t) +

∫
τt dDivj bt. for a.e. t ∈ (0, T ).

By application of Gronwall’s lemma

η(t) ≤ e
∫ t
0 ‖max{0,div bs}‖L∞(Ω) ds

[
η(0) +

∫ t

0

∫
τs dDivj bs ds

]
for t ∈ [0, T ].

Since η is zero outside [0, T ], inspecting the jumps on the right hand side of (108) shows that the
distributional trace of η at 0 is

∫
Ω τ0 dx. Thus (113) follows.

Proposition 3. Suppose I ∈ XI , u ∈ Xu, and τ ∈ L1(Divj u) with F (I, u; τ) = 0 and I ≥ 0.

Suppose also
∫ T

0 ‖max{0, div bt}‖L∞(Ω) dt <∞. Then I = 0 (a.e.), if τ = 0 (a.e.) on L+
u ∪ L−u .

Proof. The claim follows by direct application of Lemma 5, if we show∫
Ω
τ0 dx+

∫ t

0

∫
τs dDivj bs ds ≤ 0.

Minding (109), this amounts to showing τ Divj u ≤ 0. We indeed have τ Divj ux(L+
u ∪ L−u ) ≤ 0 by

the assumption τ = 0 on L+
u ∪ L−u , so it remains to show τ Divj ux(Jdiv

u \ (L+
u ∪ L−u )) ≤ 0.

From Proposition 3 we deduce that I± exists a.e. on N±u ∪ P±u (which we recall being defined
in (51),(52)), and

τ〈u+ − u−, νJu〉 = 〈I+u+ − I−u−, νJu〉 Hn-a.e. on Ju, (114)

with I± ≥ 0 defined arbitrarily on Ju \(N±u ∪P±u ). Now, on Jdiv
u \(L+

u ∪L−u ) = Jdiv
u \(P+

u ∪P−u ), we
have both 〈u+, νJu〉 ≤ 0 and 〈u−,−νJu〉 ≤ 0. Therefore, I ≥ 0 and (114) imply τ〈u+−u−, νJu〉 ≤ 0
a.e. on Jdiv

u \ (L+
u ∪L−u ). This means τ Divj ux(Jdiv

u \ (L+
u ∪L−u )) ≤ 0. We may thus conclude that

τ Divj u ≤ 0, as required.

With the help of the renormalisation idea due to DiPerna and Lions [3], we can forgo the
assumption I ≥ 0, and thus show uniqueness with respect to boundary conditions and jumps. The
definition of κu may be recalled from (91). Observe that κu ∈ L1(Divj u) holds automatically when
Hn(Ju) <∞, because u is bounded.

Lemma 6. Let u ∈ Xu and I ∈ XI , and suppose κu ∈ L1(Divj u) as well as 0 ∈ F (I, u; τ) for
some τ ∈ L1(Divj u). Then F (β(I), u; τβ) = 0 for some τβ ∈ L1(Divj u) for all Lipschitz functions
β ∈ C1(R).

Proof. The proof is a rather straightforward application of the chain rule [14, 13] for divergences
of composition of the form β(I)u. First of all, we observe from the condition 0 ∈ F (I, u) that
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Div(Iu) is a measure with finite variation; cf. Proposition 3. Accordingly, by [14] the absolutely
continuous part of the distributional divergence Div(β(I)u) can be written

div(β(I)u) =
(
β(I)− Iβ′(I)

)
div u+ β′(I) div(Iu), (115)

while the singular part satisfies for any oriented countably Hn-rectifiable Σ with normal field ν the
condition

Div(β(I)u)xΣ =

[
Tr+(u,Σ)β

(
Tr+(Iu,Σ)

Tr+(u,Σ)

)
− Tr−(u,Σ)β

(
Tr−(Iu,Σ)

Tr−(u,Σ)

)]
HnxΣ. (116)

When Tr±(u,Σ) = 0, the corresponding argument of β is defined arbitrarily here. Moreover, if
Divj(Iu) is concentrated on a countably Hn-rectifiable set Σ, then Divj(β(I)u) is concentrated on
Σ.

Now, regarding the absolutely continuous part, since 0 ∈ F (I, u), we have div(Iu) = I div u.
Therefore also div(β(I)u) = β(I) div by (115). Thus the absolutely continuous part of the condition
0 ∈ F (β(I), u) has been taken care of.

As for the jump part, from above we have Divj(β(I)u) � Divj(Iu), while 0 ∈ F (I, u) implies
Divj(Iu) � Divj u. It follows that Divj(β(I)u) = τβ Divj u, for some measurable function τβ
defined on Jdiv

u . We have to show that τβ ∈ L1(Divj u). Minding Proposition 3, the one-sided
Lebesgue limits I± exist a.e. when 〈u±, νJu〉 6= 0, and (Iu)± = I±u±. Therefore we may simplify
(116) to

Div(β(I)u)xΣ =
[
〈u+, νJu〉β(I+)− 〈u−, νJu〉β(I−)

]
Hnx(Jdiv

u ∩ Σ). (117)

Observe now that, a.e. on Jdiv
u , we have

|τβ〈u+ − u−, νJu〉| = |〈u+, νJu〉β(I+)− 〈u−, νJu〉β(I−)| ≤Mκu|〈u+ − u−, νJu〉|,

where M := maxβ([−MI ,MI ]) <∞. When κu ∈ L1(Divj u), as we have assumed, it thus follows
that τβ ∈ L1(Divj u).

Finally, it remains to show that Divc(β(I)u) vanishes. This is not directly covered by the
results of [14], but can be obtained as follows. First of all, denoting Es := Ej + Ec, and Divs :=
Divj + Divc, by the proof of [14, Theorem 3.3], Divs(β(I)u) is the limit, in the sense of distributions,
of

Cδ1 + Cδ2 + Cδ3 := β′(Iδ)(Divs(Iu) ∗ ρδ) + [β(Iδ)− Iδβ′(Iδ)] Divs u+ β′(Iδ)Tρ as δ ↘ 0. (118)

Here ρδ := δn+1ρ(· /ρ) are standard the mollifiers on Rn+1, the commutator

Tδ := Div(Iu) ∗ ρδ −Div(I(u ∗ ρδ)),

and Iδ := I ∗ ρδ. By [14, Proposition 3.4], any weak* limit σ of {|Tδ|} is a singular measure
satisfying σxA ≤ ‖I‖L∞(A)L|Esu| for any Borel set A and a constant L dependent on ρ and n.

Since u ∈ SBD(Rn+1), and I ∈ L∞(Rn+1), we get σ � |Eju|. In particular, any limit of Cδ3 as
δ ↘ 0 is absolutely continuous with respect to |Eju|. We also have that any limit of Cδ1 as δ ↘ 0
is absolutely continuous with respect to Divs(Iu) = Divj(Iu) � Divj u, and any limit of Cδ2 is
absolutely continuous with respect to Divs u = Divj u. It thus follows that Divs(β(I)u) � |Eju|.
But Eju is concentrated on the countably Hn-rectifiable set Ju, and the Cantor part of E(β(I)u)
vanishes on such sets. Hence Divc(β(I)u) vanishes, so Divs(β(I)u) = Divj(β(I)u). The claim
follows.
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We have finally reached our main uniqueness result.

Theorem 6. Suppose u ∈ Xu with
∫ T

0 ‖max{0,div bt}‖L∞(Ω) dt <∞ and κu ∈ L1(Divj u). Then,

given Y ± ∈ L∞MI
(L±u ), there is at most one solution pair I ∈ XI and τ ∈ L1(Divj u) of 0 ∈ F (I, u; τ)

with one-sided traces satisfying I+ = Y + on L+
u and I− = Y − on L−u .

Proof. Observe, first of all, that by Proposition 3 the one-sided Lebesgue limits I± of I exist
a.e. on L±u . Suppose then that there are two solutions I, I ′ ∈ XI and τ, τ ′ ∈ L1(Divj u) satisfying
T (I, u; τ) = 0 and T (I ′, u; τ ′) = 0 with I± = Y ± on L±u and with (I ′)± = Y ± on L±u . In particular,
T (I − I ′, u; τ − τ ′) = 0 with (I − I ′)± = (Y ± − Y ±) = 0 on L±u .

Now, according to Lemma 6, I − I ′ is a renormalised solution, i.e., given, e.g., β(t) := |t|2/(1 +
|t|), we have 0 ∈ F (β(I − I ′), u; τβ) for some τβ ∈ L1(Divj u). Recalling that

L±u = {x ∈ Jdiv
u | 〈u±(x),±ν(x)〉 > 0},

and observing that β ≥ 0, an inspection of (117) now reveals that

Div(β(I − I ′)u)xJdiv
u ≤ 0.

But thanks to F (β(I − I ′), u; τβ) = 0, we have Div(β(I − I ′)u)xJdiv
u = τβ Divj u, so it follows that

τβ Divj u ≤ 0. A direct application of Lemma 5, similarly to Proposition 3, therefore shows that
β(I ′− I) = 0 (a.e.). Thus I = I ′ (a.e.). Moreover, τ is easily seen to be uniquely determined (a.e.)
by I and u on Jdiv

u . The solution I, τ must therefore be unique.

Remark 7. Because I − I ′ may be negative, it is not sufficient to assume that τ − τ ′ = 0 on
L+
u ∪ L−u , as in Proposition 3. Just consider u(t, x) = (1, sgnx) in ΩT := (0, T ) × (−1, 1). Then

Ju = [0, T ]×{0}∪∂ΩT , and L+
u ∪L−u = [0, T ]×{0}∪{0}×[−1, 1]. Moreover, L+

u ∩L−u = [0, T ]×{0}.
Given any α ∈ R, let us set Iα(t, x) := ±α for ±x ≤ t ≤ T , and Iα(t, x) := 0 elsewhere in
[0, T ]× [−1, 1]. Then Iα is a solution of 0 ∈ F (I, u) with τ = 0 on L+

u ∪ L−u .
In the case of “at most one-sided sources” with not both 〈u+, νJu〉 > 0 and −〈u−, νJu〉 > 0,

it is easy to see formally that it suffices to assume τ = τ ′ on L+
u ∪ L−u . To see this, note that

F (I − I ′, u; τ − τ ′) = 0 then implies

(I − I ′)+〈u+, νJu〉 − (I − I ′)−〈u−, νJu〉 = 0 on L+
u ∪ L−u .

Thus, when 〈u∓, νJu〉 = 0, trivially (I − I ′)± = 0 on L+
u ∪L−u . Otherwise, when both 〈u+, νJu〉 6= 0

and 〈u−, νJu〉 6= 0, we deduce sgn(I − I ′)+ = sgn(I − I ′)−. Consequently, with β(t) = |t| (which is
not admissible for Lemma 6), we get

β((I − I ′)+)〈u+, νJu〉 − β((I − I ′)−)〈u−, νJu〉 = ±[(I − I ′)+〈u+, νJu〉 − (I − I ′)−〈u−, νJu〉] = 0

on L+
u ∪ L−u . An inspection of (117) would now, formally, show that Div(β(I − I ′)u)xJu ≤ 0. An

approximation argument on β could be used to establish this more rigorously.

4. The image interpolation problem

4.1. Problem formulation

We now intend to study the problem (3) of fitting to available data a space-time image I
satisfying our generalisation 0 ∈ T (I, u) of the optical flow constraint for some SBD velocity field
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u. Such an “optimal control” approach to the optical flow problem has been previously studied in
[15] in a Sobolev space setting.

Let α, β ≥ 0 and θ, γ > 0. Suppose ψ : [0,∞) → [0,∞) is convex, increasing, and satisfies
ψ(t)/t → ∞ as t → ∞. Suppose Ψd : ΩT × R → [0,∞) is Borel measurable, and that Ψd(x, · )
is convex and continuous for a.e. x ∈ ΩT . With η : M(Ω) → R yet to be determined, we then
consider the functional

J(I, u) :=

∫
ΩT

Ψd(y, I(y)) dLn+1(y) + θ|DI|(ΩT )

+ α‖u‖L1 + β|Eju|(Rn+1) +

∫
ψ(|Eu|) dLn+1 + η(Divj u) + γHn(Ju),

(J)

and the problem

min J(I, u) subject to I ∈ XI , u ∈ Xu, and 0 ∈ F (I, u). (P)

The first term in (J), involving Ψd, is the data-fitting term, and the rest are regularisation terms.

Example 2. Typically Ψd is taken to measure the distance to available data. For example,

Ψd(x, s) =

{
‖Id(x)− s‖2/2, x ∈ Ωd,

0, otherwise,

where Ωd ⊂ ΩT is an open set where data is available, and Id is the data. As a particular case,
when data is available at times t1 ≤ t2 ≤ . . . ≤ tn ∈ [0, T ] with measurement accuracy (voxel
length in time) δ, we might have Ωd =

⋃n
i=1(ti, ti + δ)× Ω.

4.2. Divergence regularisation

We would like to show the existence of solutions to (P). Towards this end, we need to ensure
that any minimising sequence {(Ii, ui)}∞i=0 admits a subsequence converging in the sense required
by Theorem 4, showing the outer-semicontinuity of F . This will be guaranteed by the regularisation
terms of (J), if we define η appropriately. More precisely, we need some way to force (40), that is,
|Divj ui|(Rn+1)→ |Divj u|(Rn+1).

One simple approach would be to require that for a given δ > 0, we would have |Divj(B(y, δ))| =
|Divj |(B(y, δ)) for all y ∈ Rn+1. That is, in each ball of radius δ, the density of Divj u with respect
to Hn would either be a.e. negative or a.e. positive. This would keep the positive and negative
parts of the measure apart and prevent cancellation at the limit. However, we do not need to
force such strong separation, and can instead penalise based on the same idea. This is how we will
construct in the next proposition the yet undetermined term η(Divj u) of (J).

Definition. A sequence {(fj , νj)}∞j=0 of bounded Borel functions f j : Rm → R with compact

support and continuous in Rm \Sf , along with Borel probability measures νj on Rm is said to form
a nested sequence of functions if fj(x) =

∫
fj+1(x− y) dνj(y) (a.e.).

Proposition 4. Let Ω ⊂ Rm be an open bounded set, and {(fj , νj)}∞j=0 a nested sequence of
functions such that fj ≥ 0, and

∫
fj dx = 1. For µ ∈M(Rm), set

η(µ) :=

∞∑
j=0

∫
Rm
|µ|(τxfj)− |µ(τxfj)| dx, where τxf(y) := f(y − x).
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Suppose {µi}∞i=0 ⊂M(Rm) weakly* converges to µ ∈ M(Rm) with suppµi ⊂ Ω and supi |µi|(Ω) +
η(µi) < ∞. If also |µi| ∗⇀ λ, then λ = |µ|. Moreover, the functional η is lower-semicontinuous
with respect to the simultaneous weak* convergence of {(µi, |µi|)}∞i=0.

If each fj ∈ Cc(Rm), then it is not necessary to assume the weak* convergence of |µi| to λ.

Proof. Observe that by application of Fubini’s theorem and the assumption
∫
fj dx = 1, we have∫

Rm
|µ|(τxfj) dx =

∫
Ω

∫
Rm

fj(y − x) dx d|µ|(y) = |µ|(Ω).

Hence, we may alternatively write

η(µ) =

∞∑
j=0

ηj(µ), where ηj(µ) := |µ|(Ω)−
∫
|µ(τxfj)| dx. (119)

Recall that Sf denotes the set of (approximate) discontinuity points of f . Fubini’s theorem
and the fact that Sf is an Lm-negligible Borel set, imply that

∫
λ(Sτxfj ) dx = 0. This shows that

λ(Sτxfj ) = 0 for a.e. x ∈ Rm. As a consequence (see, e.g., [2, Proposition 1.62]), we have µi(τxfj)→
µ(τxfj) for a.e. x ∈ Rm. Minding that supi |µi|(Ω) < ∞ and Ω is bounded by assumption, an
application of the dominated convergence theorem then shows that∫

|µi(τxfj)| dx→
∫
|µ(τxfj)| dx, (i→∞). (120)

We stress that (120) holds because of the convergence |µi| ∗⇀ λ. Since the total variation |µ|(Ω) is
lower-semicontinuous with respect to weak* convergence, it follows from (120) that each ηj is lower-
semicontinuous with respect to the simultaneous weak* convergence of {(µi, |µi|)}∞i=0. Consequently
also η is lower-semicontinuous.

If fj is actually continuous with compact support, then µi(τxfj)→ µ(τxfj) for all x ∈ Ω by the
weak* convergence of µi to µ alone, so (120) and lower-semicontinuity holds without assumptions
on the convergence of {|µi|}∞i=0.

Observe now that thanks to the fact that {(fj , νj)}∞i=0 is a nested sequence of functions,
{ηj(µ)}∞j=0 forms a decreasing sequence (for any µ ∈M(Ω)). Indeed, as fj(x) =

∫
fj+1(x−y) dνj(y)

and νj(Rm) = 1 with νj ≥ 0, we have∫
|µ(τxfj)| dx =

∫ ∣∣∣∣∫ µ(τx+yfj+1) dνj(y)

∣∣∣∣ dx ≤ ∫ ∫ |µ(τx+yfj+1)| dνj(y) dx

=

∫ ∫
|µ(τx+yfj+1)| dx dνj(y) =

∫
|µ(τxfj+1)| dx

after a change of variables in the last step to eliminate y. Minding the definition (119), it follows
from here that ηj(µ) ≥ ηj+1(µ).

To show the convergence of the total variation measures |µi| to |µ|, we only have to show
|µi|(Ω)→ |µ|(Ω). To see this, we choose an arbitrary ε > 0, and write

|µ|(Ω)− |µi|(Ω) = ηj(µ)− ηj(µi) +

∫
|µ(τxfj)| − |µi(τxfj)| dx. (121)

Next we observe from the already proved lower semi-continuity of η and the bound supi η(µi) =:
K < ∞ that η(µ) ≤ K as well. Therefore, recalling that {ηj(µ)}∞j=1 and {ηj(µi)}∞j=1 for i =
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0, 1, 2, . . . are decreasing sequences, as shown above, it follows that by taking j large enough,
we can ascertain that sup{ηj(µ), ηj(µ

1), ηj(µ
2), . . .} ≤ ε. (Note that ηj ≥ 0!) Employing this

observation in (121), we find that

∣∣|µ|(Ω)− |µi|(Ω)
∣∣ ≤ 2ε+

∣∣∣∣∫ |µ(τxfj)| − |µi(τxfj)| dx
∣∣∣∣

for any large enough j and all i. The integral term tends to zero as i → ∞ by (120). Therefore,
we have

lim
i→∞
||µi|(Ω)− |µ|(Ω)| ≤ 3ε.

Since ε > 0 was arbitrary, the proof can be concluded.

Remark 8. Let the functions fj ≥ 0 be in Cc(Rm) and instead of
∫
fj dx = 1, satisfy

∑
ξ∈δjZm τξfj ≡

1 for some δj > 0. Proposition 4 then holds with nearly identical proof if we define

η(µ) :=
∞∑
j=0

∑
ξ∈δjZm

(|µ|(τξfj)− |µ(τξfj)|) =
∞∑
j=0

(
|µ|(Ω)−

∑
ξ∈δjZm

|µ(τξfj)|

)
.

Example 3. The following form nested sequences of functions satisfying the conditions fj ≥ 0
and

∫
fj dx = 1.

1. The indicator functions fj := 2jmχ2−jQ, where Q := [0, 1]m.

2. On R, the triangular functions fj(x) := 2jf(2jx), where f(x) = max{0, 1 − |x|}. On Rm
we can similarly take a more complicated (shape) function related regular simplicial meshes,
and appropriate weights for fj .

3. For a decreasing sequence δj ↘ 0, the mollifiers fj := ζδj , when the semigroup property
ζε+δ = ζε ∗ ζδ is satisfied.

Example 4. Let us take fj := 22jχ2−jQ, whereQ := [0, 1]2, as above. We also let R := {0}×[0, 1] ⊂
R2, and e := (1, 0). Then we study boundedness of η(µi) the following cases:

1. µi := H1xR −H1x(e/i+ R). Now |µi|(R2) = 2, but µi ∗⇀ 0, so by Proposition 4 necessarily
η(µi)→∞.

2. µi := H1xR− (1/i)H1x(e/i+R). This time |µi|(R2) = 1 + 1/i, and µi ∗⇀ H1xR, so it would
be desirable to have supi η(µi) < ∞. Let us verify that this is indeed the case. For each x
such that the square x+ 2−jQ touches both R and e/i+R, we have

|µi|(τxfj)− |µi(τxfj)| = |22jµi|(x+ 2−jQ)− |22jµi(x+ 2−jQ)|
≤ 22j

(
(1 + 1/i)2−j − |(1− 1/i)2−j |

)
≤ 2j+1/i.

Such x = (x1, x2) must satisfy 1/i − 2−j ≤ x1 ≤ 0 and −2−j ≤ x2 ≤ 1. As squares that do
not touch both R and e/i+R do not contribute to ηj , this gives∫
|µi|(τxfj)− |µi(τxfj)| dx ≤ max{0, 2−j − 1/i}(1 + 2−j)2j+1/i ≤ (6/i) max{0, 1− 2j/i}.

Since this is non-zero only for j < log2 i, summing over j, we have η(µi) ≤ 6(log2 i + 1)/i.
Thus η(µi) is bounded for i > 0. In fact, it tends to zero as i→∞.
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3. µi := H1xR −H1x(1/i)(e + R). Again |µi|(R2) = 1 + 1/i, and µi → H1xR, while for any x
such that the square x+ 2−jQ touches both R and (1/i)(e+R) one has

|µi|(τxfj)− |µi(τxfj)| ≤ 22j · 2/i.

As such squares must satisfy 1/i− 2−j ≤ x1 ≤ 0 and −2−j ≤ x2 ≤ 2−j , it follows that∫
|µi|(τxfj)− |µi(τxfj)| dx ≤ max{0, 2−j − 1/i}22j+1−j+1/i = (4/i) max{0, 1− 2j/i}.

Hence, as in Case 2, we get η(µi)↘ 0.

4.3. Existence of solutions

With η defined, we may finally conclude the paper with the following existence result.

Theorem 7. Problem (P) admits a solution.

Proof. Let {(Ii, ui)}∞i=0 be a minimising sequence for J . We may assume that J(Ii, ui) ≤ K <∞.
It follows that {(Ii, ui)}∞i=0 admits a subsequence, unrelabelled, such that {Ii}∞i=0 is convergent
weakly in BV(ΩT ) to some I ∈ XI ∩BV(ΩT ). We now want to extract a further subsequence such
that {ui}∞i=0 is also convergent in the senses (7)–(10) and (40).

We do this by applying Theorem 2 and Proposition 4. Even when α = 0, we have an L1 bound
for ui from Ln+1(ΩT ) < ∞ and ‖ui‖L∞(ΩT ) ≤ Mu. Similarly we can bound |Eju|(Rn+1) when
β = 0 by employing γHn(Ju) ≤ K and γ > 0. Therefore, as J(I, u) includes the remaining terms∫
ψ(Eu) dx and Hn(Ju) required to be bounded by Theorem 2, it follows that there is a further

subsequence of {(Ii, ui)}∞i=0, unrelabelled, such that {ui}∞i=0 is convergent to some u ∈ Xu in the
sense (7)–(10). In particular, it follows from (9) that Divj ui ∗⇀ Divj u weakly* in M(Rn+1). By
extracting a further subsequence, still unrelabelled, we may assume that {|Divj ui|}∞i=0 is weakly*
convergent to some λ ∈M(Rn+1). Observing the bound η(ui) ≤ K, Proposition 4 now shows that
λ = |Divj u|. This proves (40).

The convergences (37)–(39) follow from (7)–(9). We have therefore shown that all the conditions
of Corollary 1 hold, and so 0 ∈ F (I, u). It only remains to show that J(I, u) is lower-semicontinuous
with respect to weak convergence of {Ii}∞i=0 in BV(ΩT ) and the convergences (7)–(10),(40) of
{ui}∞i=0. Most of this is standard. Since Ψd(x, · ) is lower-semicontinuous for a.e. x ∈ ΩT , and
Ψd is Borel measurable and bounded from below, I 7→

∫
ΩT Ψd(x, I(x)) dx is lower-semicontinuous

with respect to strong convergence in L1(ΩT ); see, e.g., [21, Theorem 6.49]. It is well known that
|DI|(ΩT ) is lower-semicontinuous with respect to weak convergence in BV(ΩT ), while Proposition
4 provides the required lower-semicontinuity of η. Finally, the terms

α‖u‖L1 + β|Eju|(Rn+1) +

∫
ψ(|Eu|) dLn+1 + γHn(Ju)

related to Theorem 2 are lower-semicontinuous by, e.g., [8, Corollary 1.2]. This completes the
proof.
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Appendix A. Auxiliary results

Lemma 7. Let µ ∈ M(A), and suppose v, v0, v1, . . . ∈ L1(µ;Rk) with vi → v strongly. If µ({x ∈
A | v(x) = 0}) = 0, then limi→∞ µ({x ∈ A | vi(x) = 0}) = 0.

Proof. Let ε > 0 be arbitrary. We assume the contrary of the claim: that for some δ > 0 and each
i = 0, 1, 2, . . ., the sets Zi := {x ∈ A | vi(x) = 0} satisfy µ(Zi) ≥ 2δ. Since L1 convergence implies
convergence in measure, we find that the sets Ei := {x ∈ A | ‖vi(x)− v(x)‖ > ε} satisfy µ(Ej) < δ
for some large index j. Let Dε := Zj \ Ej . We then have

‖v(x)‖ ≤ ‖v(x)− vj(x)‖+ ‖vj(x)‖ ≤ ε, (x ∈ Dε),

as well as µ(Dε) ≥ µ(Zj)− µ(Ej) ≥ δ.
Let then Fk :=

⋃∞
`=kD2−` . From the preceding, we deduce ‖v(x)‖ ≤ 2−k on Fk, and µ(Fk) ≥ δ.

Taking D :=
⋂∞
k=0 Fk, we then have µ(D) ≥ δ and v = 0 on D. This is in contradiction to

µ({x ∈ A | v(x) = 0}) = 0. The proof is concluded.

Proposition 5. Suppose u ∈ BD(Ω)∩L∞Mu
(Ω) and I ∈ BV(Ω)∩L∞MI

(Ω). Then Iu ∈ BD(Ω) with

|E(Iu)|(Ω) ≤MI |Eu|(Ω) +Mu|DI|(Ω).

Proof. The proof is similar to the initial parts of the proof of the BV chain rule [20, Theorem 3.96].
Firstly, that Iu ∈ L1(Ω) is obvious from both I and u being L1 and bounded on Ω. To bound the
total deformation |E(Iu)|(Ω), we take C1 approximations ui → u and Ii → I strongly in L1 with
|Eui|(Ω)→ |Eu|(Ω) and |DIi|(Ω)→ |DI|(Ω). Then

E(Iiui) =
1

2

[
∇(Iiui) + (∇(Iiui))T

]
=

1

2

[
Ii(∇ui) + Ii(∇ui)T + (∇Ii)⊗ ui + ui ⊗ (∇Ii)

]
= IiEui +∇Ii � ui.

Now, since Iiui ∈ C1(Ω),

|E(Iiui)|(Ω) =

∫
Ω
|E(Iiui)| dx ≤ ‖Ii‖L∞

∫
Ω
|Eui| dx+ ‖ui‖L∞

∫
Ω
|∇Ii| dx

≤MI |Eui|(Ω) +Mu|DIi|(Ω).

By the lower semicontinuity of the total variation, letting i→∞, we obtain the claim.
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