
Strong polyhedral approximation of simple jump sets

Tuomo Valkonen∗

Abstract

We prove a strong approximation result for functions u ∈ W 1,∞(Ω \ J), where J is the union of finitely
many Lipschitz graphs satisfying some further technical assumptions. We approximate J by a polyhedral
set in such a manner that a regularisation term η(Divj ui), (i = 0, 1, 2, . . .), is convergent. The bounded-
ness of this regularisation functional itself, introduced in [T. Valkonen: “Transport equation and image
interpolation with SBD velocity fields”, (2011)] ensures the convergence in total variation of the jump
part Divj ui of the distributional divergence.
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1. Introduction

Let u ∈ SBV(Ω) be a special function of bounded variation on the domain Ω ⊂ Rm. We would like
to approximate u by a sequence of functions {ui}∞i=0 such that ui is reasonably smooth in Ω \ Ĵui ,
(i = 0, 1, 2, . . .), and Ĵui is a polyhedral (m− 1)-dimensional set, containing the jump set Jui . As the
novelty of our results, we would like convergence from a regularisation term η(Divj ui), introduced
in [11]. The boundedness of this term ensures that if Divj ui ∗⇀ Divj u and |Divj ui| ∗⇀ λ, then
λ = |Divj u|. The notation Divj u here stands for the “jump part” of the distributional divergence
Div u, while the absolutely continuous part will be denoted by div u.

Why do we want this kind of strong approximation property? In [11] we studied an extension of the
transport equation involving “jump sources and sinks”. With u = (1, b) the velocity field and I the
space-time data being transported, it can be stated as

Div(Iu)− I div u− τ Divj u = 0 (1.1)

for some τ defined on the jump set of u, modelling the sources and sinks. To show the stability of (1.1)
with {Ii}∞i=0 converging weakly in BV(Ω) and {ui}∞i=0 converging as in the SBV/SBD compactness
theorems [3, 4], we needed to further assume that |Divj ui|(Ω) → |Divj u|(Ω). To use (1.1) as a
constraint in an optimisation problem (specifically, image interpolation), we thus had to introduce the
regularisation term η(Divj ui) ensuring this convergence. One possibility for the definition is

η(µ) :=
∞∑
`=0

(
|µ|(Ω)− 2−`m

∫
Rm

|µ(x+ [0, 2−`]m)| dx
)
, (µ ∈M(Ω)). (1.2)

Roughly η(µ) <∞ says that on average the differences 2−`m(|µ|(x+ [0, 2−`]m)− |µ(x+ [0, 2−`]m)|) go
to zero as the scale 2−` becomes smaller. Thus on small sets |µ| is close to µ.
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The problem then becomes: can we, at least in principle, numerically solve problems involving such
regularisation terms? That is, can we in particular construct a sequence of discretisations of u such
that η(Divj ui) → η(Divj u) along with the standard convergences ui → u and ∇ui → ∇u in L2,
Djui → Dju weakly*, and Hm−1(Jui) → Hm−1(Ju)? In the present work, we intend to provide a
partial answer. Specifically, we restrict our attention to functions u ∈ W 1,∞(Ω \ Ĵu), where Ĵu is the
union of finitely many Lipschitz graphs with bounded variation gradient mapping, satisfying further
technical conditions, given in Definition 5.1 below. Assuming these conditions, we show that u can
be approximated by functions ui ∈ W 1,∞(Ω \ Ĵui) with Ĵui polyhedral and satisfying Definition 5.1.
Some of our proof techniques resemble those of the SBD approximation theorem of Chambolle [6, 7].
In SBV a counterpart approximation theorem is proved by quite different techniques by Cortesani
and Toader [8]. Their result provides largely similar convergence properties as ours, but is missing the
crucial convergence of η(Divj ui). Of course, the class of functions that we are able to study at the
moment is significantly smaller. Finally, we also study anisotropic approximation with Ĵui restricted
to lie on translations of the coordinate planes.

We have organised this paper as follows. First, in Section 2, we introduce notation and some other
well-known tools. In section 3 we study the functional η, and estimates for bounding it. As a conse-
quence we also obtain some new SBV compactness results. In Section 4 we provide a series of further
technical lemmas of general nature, needed to prove the approximation theorem. In the subsequent
Section 5 we then introduce in detail the space where the approximated function u lies in, and pro-
vide further technical lemmas regarding the covering of the boundary of the jump set by cubes. Our
main approximation theorem is then stated and proved in Section 6. Finally, we study anisotropic
approximation in Section 7.

2. Preliminaries

2.1. Sets and functions

We denote the unit sphere in Rm by Sm−1, while the open ball of radius ρ centred at x ∈ Rm we
denote by B(x, ρ). The boundary of a set A is denoted ∂A, and the closure by clA.

For ν ∈ Rm, the hyperplane orthogonal to ν we denote by ν⊥ := {z ∈ Rm | 〈ν, z〉 = 0}. Pν denotes
the projection onto the subspace spanned by ν, and P⊥ν the projection onto ν⊥.

We denote by {e1, . . . , em} the standard basis of Rm.

The k-dimensional Jacobian of a linear map L : Rk → Rm, (k ≤ m), is defined as Jk[L] :=√
det(L∗ ◦ L).

A set Γ ⊂ Rm is a called a Lipschitz d-graph (of Lipschitz factor L), if there exist a unit vector zΓ,
an open set VΓ on a d-dimensional subspace of z⊥Γ , and a Lipschitz map gΓ : VΓ → Rm of Lipschitz
factor at most L, such that

Γ = {y ∈ Rm | gΓ(v) = y, v = P⊥zΓy ∈ VΓ}.

We say that Γ is polyhedral if gΓ is piecewise affine and VΓ is a polyhedral set, i.e., consists of finitely
many simplices. If gΓ is further affine, we say that Γ is affine. We define the boundary as ∂Γ := gΓ(∂VΓ).

Remark 2.1. Consider the situation d = m − 1. If Γ is the graph of f : U ⊂ Rm−1 → R, then
gΓ(v) = (x, f(x)) for v = (x, 0) ∈ VΓ = U × {0}. More generally, if VΓ ⊂ z⊥Γ for some zΓ ∈ Rm, and
f : VΓ → R is Lipschitz map, then gΓ(v) = v + zΓf(v) defines a Lipschitz graph. Conversely, if Γ is a
Lipschitz graph per the above definition, then defining fΓ(v) := 〈gΓ(v), zΓ〉 for v ∈ VΓ, we obtain the
more conventional description

Γ = {v + fΓ(v)zΓ | v ∈ VΓ}.
For our purposes it is more convenient to work with the map gΓ, however.
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2.2. Measures

The space of (signed) Radon measures on an open set Ω is denoted M(Ω). If V is a vector space,
then the space of V -valued Radon measures on Ω is denoted M(Ω;V ). The k-dimensional Hausdorff
measure, on any given ambient space Rm, (k ≤ m), is denoted by Hk, while Lm denotes the Lebesgue
measure on Rm. For a measure µ and a measurable set A, we denote by µxA the restriction measure
defined by (µxA)(B) := µ(A ∩ B). The total variation measure of µ is denoted |µ|. For a Borel map
u : Ω→ R we denote µ(u) :=

∫
Ω u dµ.

A measure µ ∈M(Ω) is said to be Ahlfors-regular (in dimension d), if there exists M ∈ (0,∞) such
that

M−1rd ≤ |µ|(B(x, r)) ≤Mrd for all r > 0 and x ∈ suppµ.

If only the first or the second inequality holds, then µ is said to be, respectively, lower or upper
Ahlfors-regular.

We will often refer to the following standard result on weak* convergence. (See, e.g., [2, Proposition
1.62]).

Proposition 2.1. Let µi ∈ M(Ω), (i = 0, 1, 2, . . .), be such that µi ∗⇀ µ ∈ M(Ω), and |µi| ∗⇀ λ ∈
M(Ω). If E is a relatively compact µ-measurable set such that λ(∂E) = 0, then µi(E)→ µ(E). More
generally, let u : Ω → R be any compactly supported Borel function, and denote by Ef the set of its
discontinuity points. Then, if λ(Ef ) = 0, we have

∫
Ω u dµ

i →
∫

Ω u dµ.

2.3. Functions of bounded variation

A function u : Ω→ RK on a bounded open set Ω ⊂ Rm, is said to be of bounded variation (see, e.g., [3]
for a more thorough introduction), denoted u ∈ BV(Ω;RK), if u ∈ L1(Ω;RK), and the distributional
gradient Du is a Radon measure. We define the norm ‖u‖BV(Ω;RK) := ‖u‖L1(Ω;RK) + |Du|(Ω).

Given a sequence {ui}∞i=1 ⊂ BV(Ω;RK), strong convergence to u ∈ BV(Ω;RK) is defined as strong
L1 convergence ‖ui−u‖L1(Ω;RK) → 0 together with convergence of the total variation |u−ui|(Ω)→ 0.

Weak convergence is defined as ui → u strongly in L1(Ω;RK) along with Dui ∗⇀ Du weakly* in
M(Ω;RK×m).

We denote by Su the approximate discontinuity set, i.e., the complement of the set where the
Lebesgue limit ũ exists. The latter is, of course, defined by

lim
ρ↘0

1

ρm

∫
B(x,ρ)

‖ũ(x)− u(y)‖ dy = 0.

The distributional gradient can be decomposed as Du = ∇uLm + Dju + Dcu, where the density
∇u of the absolutely continuous part of Du equals (a.e.) the approximate differential of u. The jump
part Dju may be represented as

Dju = (u+ − u−)⊗ νJuHm−1xJu, (2.1)

where x is in the jump set Ju ⊂ Su of u if for some ν := νJu(x) there exist two distinct one-sided
traces u±(x) defined as satisfying

lim
ρ↘0

1

ρm

∫
B±(x,ρ,ν)

‖u±(x)− u(y)‖ dy = 0, (2.2)
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where B±(x, ρ, ν) := {y ∈ B(x, ρ) | ±〈y − x, ν〉 ≥ 0}. It turns out that Ju is countably Hm−1-
rectifiable, and ν is (a.e.) the normal to Ju. Moreover, Hm−1(Su \Ju) = 0. The remaining Cantor part
Dcu vanishes on any Borel set σ-finite with respect to Hm−1.

The space SBV(Ω;RK) of special functions of bounded variation is defined as those u ∈ BV(Ω;RK)
with Dcu = 0. There we have the following compactness result.

Theorem 2.1 (SBV compactness [1]). Let Ω ⊂ Rm be open and bounded. Suppose ψ : [0,∞)→ [0,∞)
is non-decreasing with limt→∞ ψ(t)/t =∞. Suppose {ui}∞i=0 ⊂ SBV(Ω;RK) with

sup
i

(
‖ui‖L1 +

∫
Ω
ψ(|∇ui|) dx+ |Djui|(Ω) +Hm−1(Jui)

)
<∞.

Then there exists u ∈ SBV(Ω;RK) and a subsequence of {ui}∞i=0, unrelabelled, such that

ui → u strongly in L1(Ω;RK),

∇ui ⇀ ∇u weakly in L1(Ω;RK×m),

Djui ∗⇀ Dju weakly* in M(Ω;RK×m), and

Hm−1(Ju) ≤ lim inf
i→∞

Hm−1(Jui).

We will also be working with functions that are of bounded variation on a subspace. That is, let z ∈
Sm−1, and V ⊂ z⊥ be open and bounded. We then denote u ∈ BV(V ;RK) if u◦Rz ∈ BV(R−1

z V ;RK),
where Rz ∈ Rm×(m−1) is an orthonormal basis matrix for z⊥. We let

‖u‖BV(V ;RK) := ‖u ◦Rz‖BV(R−1
z V ;RK).

We define the Sobolev spaces Wn,p(V ;RK), (n ≥ 0, 1 ≤ p ≤ ∞), analogously.

We are also interested in the case when u has not just scalar or simple vector values, but u =
∇g ∈ L1(V ;RK × z⊥). Then the definition becomes that u ∈ BV(V ;RK × z⊥) if [x 7→ u(Rz(x))Rz] ∈
BV(R−1

z V ;RK×(m−1)) with

‖u‖BV(V ;RK×z⊥) := ‖x 7→ u(Rz(x))Rz‖BV(R−1
z V ;RK×(m−1)).

2.4. Poincaré-type inequalities

We will later need some Poincaré-type inequalities, which we study now. The following proposition
can be found in, e.g., [12, Theorem 5.12.7].

Proposition 2.2. Let Ω ⊂ Rd be a connected domain with Lipschitz boundary, and µ a positive
Radon measure on Rd, that is upper Ahlfors regular with constant M in dimension d− 1, and satisfies
suppµ ⊂ cl Ω. Then there exists a constant C1 = C1(Ω), such that for each u ∈ BV(Ω), we have

‖u− µ(u)/µ(Ω)‖L1(Ω) ≤ C1
M

µ(cl Ω)
|Du|(Ω).

Corollary 2.1. Suppose Ω = B(0, r) in Proposition 2.2. Then there exists a constant C2 = C2(d),
independent of r, such that

‖u− µ(u)/µ(Ω)‖L1(Ω) ≤ r2d−1C2
M

µ(cl Ω)
|Du|(Ω), (u ∈ BV(Ω)). (2.3)

Suppose, in particular, that µ = LdxΩ′ ⊂ Ω with µ(u) = 0 and Ld(Ω′) ≥ ρrd. Then, for a constant
C3 = C3(d), we have

‖u‖L1(Ω) ≤ rdρ(1−d)/dC3|Du|(Ω). (2.4)
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Proof. We apply Proposition 2.2 on the domain B(0, 1) with u1(x) := u(rx) and µ1(A) := µ(rA),
yielding

‖u1 − µ1(u1)/µ1(B(0, 1))‖L1(B(0,1)) ≤ C2
Mµ1

µ(clB(0, 1))
|Du1|(B(0, 1)).

A change of variables gives
|Du1|(B(0, 1)) = |Du|(B(0, r)),

and
‖u1 − µ1(u1)/µ1(B(0, 1))‖L1(B(0,1)) = r−d‖u− µ(u)/µ(B(0, r))‖L1(B(0,r))

as µ1(u1) = µ(u) and µ1(B(0, 1)) = µ(B(0, r)). Observing that the upper Ahlfors constant Mµ1 for µ1

is at most Mrd−1, we get (2.3).

As for the second result, we just have to approximate M . Elementary manipulations give

µ(B(x, s)) ≤ min{ωdsd,Ld(Ω′)} ≤Msd−1

for ωd the volume of the unit ball in Rd, and M defined by

M/Ld(Ω′) =
(
ωd/Ld(Ω′)

)(d−1)/d ≤ (ρ−1ωd)
(d−1)/dr1−d.

Inserting this into (2.3) gives (2.4).

3. Regularisation of total variation

3.1. Convergence of total variation measures

We now study a condition ensuring the convergence of the total variation |µi|(Ω) subject to the weak*
convergence of the measures µi, (i = 0, 1, 2, . . .). Improving a result first presented in [11], we show
in Theorem 3.1 below that if {f`}∞`=0 is a normalised nested sequence of functions per Definition 3.1
below, then it suffices to bound

η(µi) :=

∞∑
`=0

η`(µ
i), where η`(µ

i) := |µi|(Ω)−
∫
|µi(τxf`)| dx.

Here we employ the notation τxf(y) := f(y − x). In the next subsection we will then study an upper
bound on η.

Definition 3.1. Let f` : Rm → R, (` = 0, 1, 2, . . .), be bounded Borel functions with compact support
that are continuous in Rm \ Sf` . (That is, the approximate discontinuity set is the discontinuity set.)
Let also {ν`}∞`=0 ⊂ M(Rm), |ν`|(Rm) = 1. The sequence {(f`, ν`)}∞`=0 is then said to form a nested
sequence of functions if f`(x) =

∫
f`+1(x − y) dν`(y) (a.e.). The sequence is said to be normalised if

f` ≥ 0 and
∫
f` dx = 1. The sequence is said to be regular, if it is normalised, and there exist constants

α > 0 and β > 0, and a sequence h` ↘ 0,

lim
r→0

∞∑
`=0

min{h`, r} = 0, (3.1)

such that αh−m` χB(0,βh`) ≤ f` ≤ α
−1h−m` χB(0,h`).

Example 3.1. Examples include f = χ[−1/2,1/2]m in Rm, and f(t) = max{0,min{1 + t, 1 − t}} in R
(as well as similar but more complicated shape functions in Rm). Regularity holds in these cases, and
in the more general typical case f`(x) := h−m` f(x/h`) for h` ↘ 0 and some f ≥ αχB(0,β) with compact
support and

∫
f dx = 1.
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Theorem 3.1. Let Ω ⊂ Rm be an open and bounded set, and {(f`, ν`)}∞`=0 a normalised nested sequence
of functions. Define

η(µ) :=
∞∑
`=0

η`(µ), where η`(µ) := |µ|(Ω)−
∫
|µ(τxf`)| dx, (µ ∈M(Ω)). (3.2)

Suppose {µi}∞i=0 ⊂M(Ω) weakly* converges to µ ∈M(Ω) with supi |µi|(Ω)+η(µi) <∞. If also |µi| ∗⇀
λ, then λ = |µ|. Moreover, each of the functionals η and η`, (` = 0, 1, 2, . . .), is lower-semicontinuous
with respect to the weak* convergence of {µi}∞i=0. Provided that the weak* convergences hold inM(Rm),
then also η`(µ

i)→ η`(µ), (` = 0, 1, 2, . . .).

Proof. Let us suppose first that µi ∗⇀ µ and |µi| ∗⇀ λ weakly* in M(Rm) rather than just M(Ω). We
denote by Ef the discontinuity set of f , while Sf stands for the approximate discontinuity set. Fubini’s
theorem and the fact that Sf is an Lm-negligible Borel set, imply that

∫
λ(Sτxf`) dx = 0. This shows

that λ(Sτxf`) = 0 for a.e. x ∈ Rm. Since, by assumption Ef ⊂ Sf , it follows that λ(Eτxf`) = 0, so
that by Proposition 2.1 we have µi(τxf`)→ µ(τxf`) for a.e. x ∈ Rm. Likewise |µi|(τxf`)→ λ(τxf`) for
a.e. x ∈ Rm. Since supi |µi|(Ω) <∞, and Ω is bounded, an application of the dominated convergence
theorem now yields

lim
i→∞

∫
|µi(τxf`)| dx =

∫
|µ(τxf`)| dx. (3.3)

We stress that (3.3) holds because of the convergence |µi| ∗⇀ λ in M(Rm) and λ(Eτxf`) = 0.

If we can show that, as claimed, λ = |µ|, it follows immediately from (3.3) and the definition
(3.2) that η`(µ

i) → η`(µ), showing that part of the claim of the lemma. Moreover, since the total
variation |µi|(Ω) is lower-semicontinuous with respect to weak* convergence, it follows from (3.3) that
each η` is lower-semicontinuous with respect to the simultaneous weak* convergence of {(µi, |µi|)}∞i=0.
Consequently also η is lower-semicontinuous with respect to the simultaneous convergence (by Fatou’s
lemma). However, assuming that {|µi|}∞i=0 does not converge, let us take a subsequence {µin}∞n=0 such
that η(µin)→ α := lim infi→∞ η(µi). Since supi |µi|(Ω) <∞, we may move to a further subsequence,
unrelabelled, such that also |µin | ∗⇀ λ for some λ ∈ M(Ω). Since still η(µin) → α, we deduce from
the lower semicontinuity with respect to the simultaneous weak* convergence that α ≥ η(µ). This
completes the proof of the claim that η is lower-semicontinuous with respect to weak* convergence of
{µi}∞i=0 alone.

Returning to the proof of λ = |µ|, observe that thanks to the fact that {(f`, ν`)}∞i=0 is a nested
sequence of functions, {η`(µ)}∞`=0 forms a decreasing sequence (for any µ ∈M(Ω)). Indeed, as f`(x) =∫
f`+1(x− y) dν`(y) and ν`(Rm) = 1 with ν` ≥ 0, we have∫

|µ(τxf`)| dx =

∫ ∣∣∣∣∫ µ(τx+yf`+1) dν`(y)

∣∣∣∣ dx ≤ ∫ ∫ |µ(τx+yf`+1)| dν`(y) dx

=

∫ ∫
|µ(τx+yf`+1)| dx dν`(y) =

∫
|µ(τxf`+1)| dx

after a change of variables in the last step to eliminate y. Minding the definition (3.2), it follows from
here that η`(µ) ≥ η`+1(µ).

To show λ = |µ|, that is |µi| ∗⇀ |µ|, we only have to show |µi|(Ω) → |µ|(Ω). To see the latter, we
choose an arbitrary ε > 0, and write

|µ|(Ω)− |µi|(Ω) = η`(µ)− η`(µi) +

∫
|µ(τxf`)| − |µi(τxf`)| dx. (3.4)

Next we observe from the already proved lower semi-continuity of η and the bound supi η(µi) =: K <
∞ that η(µ) ≤ K as well. Therefore, recalling that {η`(µ)}∞`=1 and {η`(µi)}∞`=1 for i = 0, 1, . . . are
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decreasing sequences, as shown above, it follows that by taking j large enough, we can ascertain that
sup{η`(µ), η`(µ

1), η`(µ
2), . . .} ≤ ε. (Note that η` ≥ 0!) Employing this observation in (3.4), we find

that ∣∣|µ|(Ω)− |µi|(Ω)
∣∣ ≤ 2ε+

∣∣∣∣∫ |µ(τxf`)| − |µi(τxf`)| dx
∣∣∣∣

for any large enough j and all i. The integral term tends to zero as i → ∞ by (3.3). Therefore, we
have

lim
i→∞

∣∣|µi|(Ω)− |µ|(Ω)
∣∣ ≤ 3ε.

Since ε > 0 was arbitrary, this concludes the proof under the assumption that the weak* convergences
are in M(Rm).

If this assumption does not hold, we may still switch to a subsequence for which µik ∗⇀ µ̄ and
|µik | ∗⇀ λ̄ weakly* in M(Rm). Then the above reasoning shows that |µ̄| = λ̄. But, since Ω is open,
necessarily µ̄xΩ = µ and λ̄xΩ = λ. This implies λ = |µ|. By the reasoning above, η`(µ

ik) → η`(µ̄).
Hence an application of the triangle inequality gives

η`(µ) = η`(µ̄xΩ) ≤ η`(µ̄) = lim
k→∞

η`(µ
ik).

As this bound holds for every subsequence, we deduce that each η`, (` = 0, 1, 2, . . .), is lower-
semicontinuous, and consequently η as well. This concludes the proof.

Remark 3.1. Since, by assumption,
∫
f` dx = 1, we may alternatively write η`(µ) =

∫
Rm |µ|(τxf`)−

|µ(τxf`)| dx.

We will occasionally refer to the following elementary properties that follow from the triangle in-
equality and the fact that supp f` ⊂ B(0, h`).

Lemma 3.1. Let {(f`, ν`)}∞`=0 be a regular nested sequence of functions and A ⊂ Rm a Borel set.

(i) We have
η`(µxA) + η`(µxRm \A) ≤ η`(µ) ≤ η`(µxA) + 2|µ|(Rm \A).

(ii) If {λx}x∈Rm ⊂M(Ω), then∫
A
|λx|(τxf`) dx ≤

∫
|λxx(A+B(0, h`))|(τxf`).

3.2. A bound on geometrical complexity

We now introduce a quantification of the geometrical complexity of a measure or set. It bears some
resemblance to definitions of uniform rectifiability, as studied by David and Semmes [9]. That notion,
however, does not provide the regularity we need, as it allows considerable “dense” packing of the set,
merely measuring locally the deviation from a Lipschitz surface in a geometric sense. Our notion, by
contrast, measures the deviation in the sense of measure.

Definition 3.2. Let Ω ⊂ Rm open and bounded, and {(f`, ν`)}∞`=0 a regular nested sequence of
functions per Definition 3.1. Let µ ∈ M(Ω) be a radon measure, d ≤ m − 1 and L,M ∈ [0,∞). We
denote µ ∈ Spd(Ω, L,M) if the following hold.

1. µ is upper Ahlfors-regular in dimension d with constant M .
2. There exist families G = {G`}∞`=0, G` = {Γx` | x ∈ Rm} of d-dimensional Lipschitz graphs Γx` , of

Lipschitz factor at most L, satisfying

Sp(µ;G) :=
∞∑
`=0

Sp`(µ;G`) <∞, where Sp`(µ;G`) :=

∫
Rm

∣∣µxOx` \ Γx`
∣∣(τxf`) dx, (3.5)

with the notation Ox` := x+ supp f`.
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(a) A “simple” set with Sp(Γ) = ∞ (b) A “complex” set with Sp(Γ) < ∞

Figure 1: Examples of sets satisfying and failing the condition of Definition 3.2.

Definition 3.3. We also set

Sp(µ) := inf
G

Sp(µ;G), and Sp`(µ) := inf
G`

Sp(µ;G`),

where the infimum is taken over all families of the type specified above.

Definition 3.4. For a bounded set E ⊂ Rm, we denote E ∈ Spd(Ω, L,M) if HdxE ∈ Spd(Ω, L,M),
and set Sp`(E;G) = Sp`(HdxE;G), etc.

Definition 3.5. For the Lipschitz graphs Γx` from Definition 3.2, we use the shorthand notations
V x
` := VΓx

`
, gx` := gΓx

`
, and zx` := zΓx

`
.

Remark 3.2. Even quite simple sets may fail to satisfy this condition, as Example 3.2 below demon-
strates. This poses the question whether this is a reasonable concept. As an element of justification,
in Example 3.3 we provide an example of a somewhat “complex” set that satisfies the condition. After
that, in Proposition 3.1, we show that the condition implies rectifiability.

Example 3.2. Let us choose h` := 2−` and fh(x) = h−2χQ(x/h) for Q := [−1/2, 1/2]2. We then set
Γ1 = [0, 1] × {0} and Γ2 = {(x, g(x)) | x ∈ [0, 1]} for g(x) = e−1/x, and study µ := H1x(Γ1 ∪ Γ2) on
R2. See Figure 1(a) for a sketch.

Suppose h ∈ (0, 1) and let

Ah := (h`/2, h`/2) + {(x, y) | x ∈ [0, 1− h], g(x+ h) ≤ h, y ∈ [g(x+ h)− h, 0]}.

Then, whenever (x, y) ∈ Ah, both

H1(Γi ∩ ((x, y) + hQ)) ≥ h, (i = 1, 2).

Consequently, by the definition of fh, we find that

(H1xΓi)(τ(x,y)fh) ≥ h−1, (i = 1, 2; (x, y) ∈ Ah).

If we set
Gi` := {(Γ1 ∪ Γ2 \ Γi) ∩ ((x, y) + h`Q) | (x, y) ∈ R2},

we then have

h−1
` L

2(Ah`) ≤
∫
Ah`

(H1xΓi)(τ(x,y)fh`) d(x, y) ≤ Sp`(µ;Gi`).

We want to show that Ah has too large measure for condition (3.5) to be satisfied, that is h−1
` L

2(Ah`)
does not sum to a finite quantity (for any sequence h` ↘ 0).

For small enough h, we have

Ah ⊃ {(x, y) | x ≥ 0, g(x+ h) ≤ h/2, y ∈ [−h/2, 0]}.
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Since g−1(h) = −1/ log h, we thus have (for small enough h)

h−1L2(Ah) ≥ h−1

∫ g−1(h/2)−h

0
h/2 dx = (−1/ log(h/2)− h)/2.

We observe
∞∑
`=0

(−1/ log(h`/2)− h`) =

∞∑
`=0

(1/(`+ 1)− 2−`) =∞.

Therefore
∑∞

`=0 Sp`(µ;Gi`) =∞, (i = 1, 2).

Finally, we observe that there do not exist families G`, (` = 0, 1, 2, . . .), of Lipschitz graphs covering
(Γ1 ∪ Γ2) ∩ ((x, y) + hQ) with bounded constant, so only Γ1 or Γ2 can be covered, as has been done
above. To see this, one observes that for the Lipschitz constant to be bounded, there must exist α > 0
such that any Lipschitz graph Γ covering a part Γ1 has |〈zΓ, (1, 0)〉| ≥ α. But then either zΓ is a
tangent vector to Γ2, or Γ2 is occluded by Γ1 when looking in the direction of z. Thus µ fails (3.5).

Example 3.3. Let ri := 2−i, and Γi := {1 − ri} × [0, ri], (i = 0, 1, 2, . . .). Set then R :=
⋃∞
i=0 Γi, as

sketched in Figure 1(b). We claim that R satisfies (3.5) with respect to f`(x) = h−2
` χQ(x/h`), where

Q := [−1/2, 1/2]2. Indeed, at every (x, y) ∈ R2, let us choose Γ
(x,y)
` as Γi ∩ ((x, y) + h`Q) for the

smallest i such that 1− ri ≥ x− h`/2. All we then have to do is to calculate

Zi,` :=

∫
H1x(Γi \ Γ

(x,y)
` )(τ(x,y)f`) d(x, y), (i = 0, 1, 2, . . .). (3.6)

The term H1x(Γi \Γ
(x,y)
` )(τ(x,y)f`) is non-zero only when x+ h`/2 ≥ 1− ri and x− h`/2 ≤ 1− ri−1.

Minding that ri−1 − ri = ri, it follows that x is on an interval of length h` − ri, and h` ≥ ri. For fixed
x we may thus calculate that∫

(H1xΓi)(τ(x,y)f`) dy = h−2
`

∫ ∫ y+h`

y
χ[0,ri](t) dt dy ≤ ri/h`.

This gives the estimate

Zi,` ≤

{
(h` − ri)ri/h`, h` ≥ ri,
0, otherwise,

for the contribution (3.6) of Γi, (i = 0, 1, 2, . . .), to (3.5). But h` ≥ ri means i ≥ − log2 h`, so summing
the contributions of Γi for i ≥ − log2 h`, we obtain

Sp`(µ) ≤
∞∑
i=0

Zi,` ≤
∑

i≥− log2 h

(h` − ri)ri/h` ≤
∑

i≥− log2 h`

ri ≤ 2h`.

Thus (3.5) holds when
∑∞

`=0 h` < ∞. Moreover, it is possible to show that R is Ahlfors-regular in
dimension 1, the maximum for the constant M for the upper bound being given at (1, 0).

Proposition 3.1. Suppose Ω ⊂ Rm is open and bounded, and µ ∈ M(Ω) satisfies (3.5). Then µ is
concentrated on a countably d-rectifiable set J . If µ ∈ Spd(Ω, L,M), i.e., µ is also upper Ahlfors-regular,
then µ is d-rectifiable, µ� HdxJ .

Proof. Let G be as in Definition 3.2. Let K be a compact set containing suppµ + B(0, h0). To con-
struct rectifiable approximations of suppµ, we need a partially discrete approximation of the Lebesgue
integral over K. Denoting by α and β the regularity constants for {f`}∞`=0 from Definition 3.1, we set
A` := B(0, βh`). With ` fixed for the moment, we then apply the Besicovitch covering theorem on

9



the family {x + A` | x ∈ K} to obtain an at most countable (actually finite) set G`, such that for a
dimensional constant cm, we have

χK ≤
∑
ξ∈G`

τξχA`
≤ cm.

It follows that
Lm ≥ c−1

m

∑
ξ∈G`

Lmx(ξ +A`). (3.7)

Moreover, from the regularity condition for f`, there exists a constant C4 > 0 dependent on α, β, and
m alone, such that ∑

ξ∈G`

τξf` ≥
∑
ξ∈G`

h−m` ατξχA`
≥ h−m` αχK ≥ C4/Lm(A`)χK . (3.8)

Now, with this preliminary setup taken care of, let us for any given y ∈ A` set Jy` :=
⋃
x∈G`+y

Γx` .

Then Jy` is Hd-rectifiable and we may, using (3.7) and (3.8), approximate

Sp`(µ;G`) =

∫ ∣∣µxOx` \ Γx`
∣∣(τxf`) dx

≥ c−1
m

∫
A`

∑
x∈y+G`

∣∣µxOx` \ Γx`
∣∣(τxf`) dy

≥ c−1
m

∫
A`

∑
x∈y+G`

∣∣µxΩ \ Jy`
∣∣(τxf`) dy

≥ C4

cmLm(A`)

∫
A`

∣∣µxΩ \ Jy`
∣∣(τyχK) dy

≥ C4

cmLm(A`)

∫
A`

∣∣µ∣∣(Ω \ Jy` ) dy.

We thus deduce that there is a choice of y` ∈ A` with

Sp`(µ;G`)cmC−1 ≥ |µ|(Ω \ Jy`` ).

Setting J :=
⋃∞
j=0 J

y`
` , it follows from observing

|µ|(Ω \ Jy`` ) ≥ |µ|(Ω \ J)

and letting ` ↗ ∞ that |µ|(Ω \ J) = 0. Since J is Hd-rectifiable, this gives the first claim of the
proposition. If |µ| is upper Ahlfors-regular in dimension d, we then have |µ| � HdxJ . We conclude
that µ is rectifiable.

We finish this subsection by showing lower-semicontinuity of the functional µ 7→ Sp(µ) + |µ|(Ω),
and, consequently, a closure property of bounded sets in the space Spd(Ω, L,M).

Proposition 3.2. Let Ω ⊂ Rm be open and bounded. Suppose {µi}∞i=0 ∈ Spd(Ω, L,M) with

sup
i=0,1,2,...

Sp(µi) + |µi|(Ω) <∞.

Then any weak* limit µ of (a subsequence of) {µi}∞i=0 satisfies µ ∈ Spd(Ω, L,M) and

Sp(µ) + |µ|(Ω) ≤ lim inf
i→∞

Sp(µi) + |µi|(Ω).
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Proof. Let ε > 0 be arbitrary. Let Gi = {Gi`}∞`=0, Gi` = {Γx,i` | x ∈ Rm}, be such that

Sp(µi;Gi) ≤ Sp(µi) + ε, (i = 0, 1, 2, . . .).

Then it suffices to show that

Sp(µ;G) + |µ|(Ω) ≤ lim inf
i→∞

Sp(µi;Gi) + |µi|(Ω)

for some G = {G`}∞`=0, G` = {Γx` | x ∈ Rm}.

We use the shorthand notation zx,i` := z
Γx,i
`

, and gx,i` := g
Γx,i
`

. We may assume that

V
Γx,i
`

= P⊥
zx,i`

B(x, h`).

This is because we may (see, e.g., [10]) extend gx,i` from V
Γx,i
`

to the whole space (zx,i` )⊥, without

increasing the Lipschitz constant.

We may, moreover, assume that µi ∗⇀ µ ∈ M(Ω), and |µi| ∗⇀ λ ∈ M(Ω), where λ ≥ |µ|. The
claim of the proposition now follows by an application of Fatou’s inequality in (3.5), if we show for all
` = 0, 1, 2, . . . and almost all x ∈ Rm that

lim inf
i→∞

∣∣µixOx` \ Γx,i`
∣∣(τxf`) ≥ ∣∣µxOx` \ Γx`

∣∣(τxf`) (3.9)

for some Lipschitz graph Γx` with constant at most L. Indeed, with ` = 0, 1, 2, . . . and x ∈ Rm fixed,
we may for each i = 0, 1, 2, . . ., define a Lipschitz map gi : B(0, h`) ⊂ Rm−1 → Γx` of constant at most

L by gi(v) = gx,i` (x+R
zx,i`

v) with Rz ∈ Rm×(m−1) the basis matrix of z⊥. Then, since Lipschitz maps

of bounded constant are compact in the topology of pointwise convergence, we define Γx` as the image
of the pointwise limit g of a subsequence of {gi}∞i=0. Rotating the domain of g back on z⊥ with z a

limit of a further subsequence of {zx,i` }
∞
i=0 will show that Γx` is a Lipschitz graph.

Let us then write ∣∣µixOx` \ Γx,i`
∣∣(τxf`) =

∣∣µi∣∣(τxf`)− ∣∣µixΓx,i`
∣∣(τxf`). (3.10)

For almost all x ∈ Rm, we have (as follows from, e.g., [2, Proposition 1.62])

|µi|(τxf`)→ λ(τxf`). (3.11)

Moreover, we have

λ(τxf`) = (λxOx` \ Γx` )(τxf`) + (λxΓx` )(τxf`)

≥
∣∣µxOx` \ Γx`

∣∣(τxf`) + (λxΓx` )(τxf`).
(3.12)

On the other hand, any weak* limit λ̃ of (a subsequence of) |µi|xΓx,i` satisfies λ̃ ≤ λxΓx` . Moreover, for

a.e. x ∈ Rm, we have |µixΓx,i` |(τxf`)→ λ̃(τxf`). Thus, minding (3.10)–(3.12), we deduce

lim inf
i→∞

∣∣µixOx` \ Γx,i`
∣∣(τxf`) = lim inf

i→∞

(∣∣µi∣∣(τxf`)− ∣∣µixΓx,i`
∣∣(τxf`))

≥
∣∣µxOx` \ Γx`

∣∣(τxf`) + (λxΓx` )(τxf`)− lim sup
i→∞

∣∣µixΓx,i`
∣∣(τxf`)

≥
∣∣µxOx` \ Γx,i`

∣∣(τxf`) + (λxΓx` )(τxf`)− λ̃(τxf`)

≥
∣∣µxOx` \ Γx`

∣∣(τxf`) for a.e. x ∈ Rm.

But this is (3.9). Since upper Ahlfors regularity clearly holds for µ with constant M by the lower
semi-continuity of |µ|(B(x, r)) with respect to weak* convergence, we may conclude the proof.
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3.3. Bounds for η

We now intend to derive bounds on η(µ) for measures µ ∈ Spd(Ω, L,M). Throughout we assume that
exactly the same regular nested sequence of functions {(f`, ν`)}∞`=0 is employed in the definition of
Sp(µ;G) and η(µ). We begin with a technical definition. We need a concept of “bounded variation on a
family of Lipschitz surfaces”. With this notion we can limit variations in the “intensity” of a rectifiable
measure µ, while bounds on Sp(µ;G) limit variations in the geometry. Both bounds together then
bound η(µ).

Definition 3.6. Suppose θ is a Borel function on a countably Hd-rectifiable set J ⊂ Rm, and G a
family of Lipschitz d-graphs. We then set

‖θ‖BV(G) := sup
∑
Γi

‖θ ◦ gΓi‖BV(VΓi
),

where the supremum is taken over all finite disjoint sub-collections {Γ1, . . . ,ΓN} ⊂ G, (N ≥ 1).

We now state the bounding result. We recall that α and {h`}∞`=0 denote regularity constants for the
maps {f`}∞`=0 from Definition 3.1. Condition (3.13) below is required for uniform constants in Poincaré
inequalities; it can trivially be satisfied by extending the domains V x

` of the Lipschitz graphs Γx` to
the whole space (zx` )⊥, as can be done according to [10].

Proposition 3.3. Let Ω ⊂ Rm be open and bounded. Suppose µ = θHdxJ ∈ Spd(Ω, L,M) with
Sp(µ;G) <∞ for the collections G = {G`}∞`=0, G` = {Γx` | x ∈ Rm}, of Lipschitz graphs of constant at
most L. Suppose, moreover, that

Γx` ∩B(x, h`) 6= ∅, and P⊥zx`
Γx` = P⊥zx`

B(x, h`), (` = 0, 1, 2, . . . ; x ∈ Rm). (3.13)

Then
η`(µ) ≤ C5h

d
`‖θ‖BV(G`) + Sp`(µ;G`) (3.14)

for some constant C5 = C5(L,m, d, α). In particular, if
∑∞

`=0 h
d
` <∞, then

η(µ) ≤ C6

(
sup

`=0,1,2,...
‖θ‖BV(G`) + Sp(µ;G)

)
for C6 = C6(L,m, d, α,

∑
hd` ).

Proof. Let ` ∈ {0, 1, 2, . . .} be fixed. By writing θ = θ+ − θ−, where θ± ≥ 0, we deduce

η`(µ) =

∫
|µ|(τxf`)− |µ(τxf`)| dx

= 2

∫
min

{∫
J
θ+τxf` dHd,

∫
J
θ−τxf` dHd

}
dx.

(3.15)

Writing J = (J ∩ Γx` ) ∪ (J \ Γx` ), we get

η`(µ)/2 ≤
∫

min

{∫
Γx
`

θ+τxf` dHd,
∫

Γx
`

θ−τxf` dHd
}
dx+

∫ ∣∣µxOx` \ Γx`
∣∣(τxf`) dx. (3.16)

Since the minimum is non-zero only if both θ+|Ox` 6= 0 and θ−|Ox` 6= 0, only points x in the set

Z` := {x ∈ Rm | 0 ∈ conv θ(Γx` ), Γx` ∩B(x, h`) 6= ∅}
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contribute to the first integral in (3.16). Applying (3.5), we thus obtain

η`(µ)/2 ≤
∫
Z`

min

{∫
Γx
`

θ+τxf` dHd,
∫

Γx
`

θ−τxf` dHd
}
dx+ Sp`(µ;G`)

≤ α−1h−m`

∫
Z`

min

{∫
Γx
`

θ+ dHd,
∫

Γx
`

θ− dHd
}
dx+ Sp`(µ;G`).

(3.17)

In the final step we have used the regularity of {f`}∞`=0, i.e., f` ≤ α−1h−m` χB(0,h`).

Next we set B` := B(0, (2L + 4)h`), and apply the Besicovitch covering theorem on the family
{B` + x | x ∈ Z`}. With cm a constant dependent on the dimension m alone, we thus find finite
collections F 1

` , . . . , F
cm
` ⊂ Z` satisfying

∑
x∈F i

`
τxχB`

≤ 1, (i = 1, . . . , cm), and
∑

x∈F`
τxχB`

≥ χZ`

with F` :=
⋃cm
i=1 F

i
` . Applying the cover F` + B` of Z` in (3.17), and denoting Γx` (θ) =

∫
Γx
`
θ dHd, we

may write

η`(µ)/2 ≤ α−1h−m`

∫
B`

∑
x∈(F`+y)∩Z`

min{Γx` (θ+),Γx` (θ−)} dy + Sp`(µ;G`)

≤ C7

Lm(B`)

∫
B`

∑
x∈(F`+y)∩Z`

min{Γx` (θ+),Γx` (θ−)} dy + Sp`(µ;G`)
(3.18)

for some constant C7 = C7(α,m,L). By the definition of F` as
⋃cm
i=1 F

i
` , it follows that to bound η`(µ),

it suffices to show that there exists C8 = C8(d, L) such that∑
x∈(F i

`+y)∩Z`

min{Γx` (θ+),Γx` (θ−)} ≤ C8h
d
`‖θ‖BV(G`) (3.19)

for Lm-a.e. y ∈ B` and all i ∈ {1, . . . , cm}.

To begin the proof of (3.19), we observe that Jd(∇gx` (v)) ≤ C9 for some C9 = C9(m, d, L). This is
due to the continuity of Jd and the bound ‖∇gx` (v)‖ ≤ L. Thus the area formula yields

Γx` (θ±) =

∫
Γx
`

θ± dHd =

∫
V x
`

(θ± ◦ gx` )Jd(∇gx` ) dv ≤ C9

∫
V x
`

θ± ◦ gx` dv. (3.20)

Let us momentarily fix x ∈ Z`, and set V = V x
` , θ̃± = θ± ◦ gx` , z = zx` , and θ̃ = θ ◦ gx` . We intend to

apply Corollary 2.1. Towards this end, we set µ(±) := Ldx(V \ supp θ̃∓). Then µ(+)(V ) + µ(−)(V ) ≥
Ld(V ), so minding (3.13), we have

max{µ(+)(V ), µ(−)(V )} ≥ Ld(V )/2 = Ld(P⊥z B(x, h`))/2 = hd`Ld(B(0, 1))/2.

Since µ(±)(θ̃±) = 0, we may apply Corollary 2.1 to get either

‖θ̃+‖L1(V ) ≤ hd`C10‖θ̃+‖BV(V ) or ‖θ̃−‖L1(V ) ≤ hd`C10‖θ̃−‖BV(V )

for a constant C10 = C10(d). As ‖θ̃±‖BV(V ) ≤ ‖θ̃‖BV(V ), by the definition of θ±, this gives

min{‖θ̃+‖L1(V ), ‖θ̃−‖L1(V )} ≤ hd`C10‖θ̃‖BV(V ).

That is
min{‖θ+ ◦ gx` ‖L1(V x

` ), ‖θ− ◦ gx` ‖L1(V x
` )} ≤ hd`C10‖θ ◦ gx` ‖BV(V x

` ). (3.21)

Next, we observe that with all ` ∈ {0, 1, 2, . . .}, i ∈ {1, . . . , cm}, and y ∈ B` fixed, the graphs
{Γx` | x ∈ (y + F i` ∩ Z`)} are disjoint. This follows from the balls x+ B`, (x ∈ y + F i` ), being disjoint
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by construction, and from Γx` ⊂ x+B` = B(x, (2L+ 4)h`). The latter holds due to assumption (3.13)
and gx` having Lipschitz factor at most L. Combining (3.21) with (3.20) thus finally yields∑

x∈(F i
`+y)∩Z`

min{Γx` (θ+),Γx` (θ−)} ≤ C9C10h
d
`

∑
x∈(F i

`+y)∩Z`

‖θ ◦ gx` ‖BV(V x
` )

≤ C9C10h
d
`‖θ‖BV(G`).

(3.22)

To conclude the proof of the proposition, we only have to observe that (3.22) yields (3.19).

Remark 3.3. Let {(f̃`, ν̃`)}∞`=0 be another nested sequence of functions that satisfies f` ≤ Cf̃` for
some C > 0. Then in (3.16) we could approximate∫ ∣∣µxOx` \ Γx`

∣∣(τxf`) dx ≤ ∫ C
∣∣µxOx` \ Γx`

∣∣(τxf̃`) dx ≤ CS̃p`(µ;G`),

where S̃p` denotes the functional Sp` obtained with the sequence {(f̃`, ν̃`)}∞`=0. Thus it would, at the
expense of additional technical complexity that we want to avoid, be possible to express our results
for different sequences of nested functions for the definitions of η and Sp.

3.4. Compactness in SBV(Ω;RK)

We finish this section by providing some compactness results in SBV(Ω;RK) following immediately
from the results above. They can be useful in applications for proving closure properties. We need
to work with vector-valued measures µ ∈ M(Ω;RK×m). The results above on Sp(µ) can readily be
extended to this situation with no changes in proofs or definitions, but for concreteness we work
through the following definition.

Definition 3.7. For µ = (µi,n) ∈ [Spm−1(Ω, L,M)]K×m, we denote Sp(µ) =
∑K

i=1

∑m
n=1 Sp(µi,j).

Our main compactness result is then as follows. The difference to the well-established Theorem 2.1
is that we replace Hm−1(Jui) by Sp(Djui).

Theorem 3.2. Let Ω ⊂ Rm be open and bounded, and {ui}∞i=0 ⊂ SBV(Ω;RK). Suppose ψ :
[0,∞) → [0,∞) is non-decreasing with limt→∞ ψ(t)/t = ∞. If each Djui ∈ [Spm−1(Ω, L,M)]K×m,
(i = 0, 1, 2, . . .), and

sup
i
‖ui‖L1(Ω) +

∫
ψ(∇ui(x)) dx+ |Djui|(Ω) + Sp(Djui) <∞, (3.23)

there then exists u ∈ SBV(Ω;RK) with Dju ∈ [Spm−1(Ω, L,M)]K×m and a subsequence, unrelabelled,
such that

ui → u strongly in L1(Ω;RK), (3.24)

∇ui ⇀ ∇u weakly in L1(Ω;RK×m), (3.25)

Djui ∗⇀ Dju weakly* in M(Ω;RK×m), and (3.26)

Sp(Dju) ≤ lim inf
i→∞

Sp(Djui). (3.27)

Proof. Let us denote by K the supremum on the left side of (3.23). We then deduce from (3.23) that

sup
i
‖ui‖L1(Ω) + |Dui|(Ω) <∞.

Moving to a subsequence, unrelabelled, we may thus assume that ui ⇀ u weakly in [BV(Ω)]k for
some u ∈ BV(Ω;RK). This gives (3.24). Moreover, because {∇ui}∞i=0 is an equi-integrable family,
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we have the existence of some w ∈ L1(Ω;RK×m), such that for a further unrelabelled subsequence,
∇ui ⇀ w weakly in L1(Ω;RK×m). Still, selecting another subsequence, we find from Proposition 3.2
that Djui ∗⇀ λ for some λ ∈ [Spm−1(Ω, L,M)]K×m with Sp(λ) ≤ lim infi→∞ Sp(Djui). Minding that
∇uiLm +Djui = Dui and Dui ∗⇀ Du by the weak convergence of {ui}∞i=0 in BV(Ω;RK), we therefore
have

wLm + λ = Du = ∇uLm +Dju+Dcu. (3.28)

Since λ ∈ [Spm−1(Ω, L,M)]K×m, Proposition 3.1 shows that the measure λ is concentrated on a Hm−1

rectifiable set J . This gives w = ∇u, showing (3.25). According to [2], the Cantor part Dcu vanishes
on any Borel set B that is σ-finite with respect to Hm−1. In particular DcuxJ = 0. Hence, by (3.28),
λ = Dju and Dcu = 0. This shows that u ∈ SBV(Ω;RK) as well as (3.26) and (3.27), thus completing
the proof.

We now state a corollary that be used to prove the closedness of equations like (1.1). Specifically, we
show stronger convergence for T ◦Djui with T : RK×m → R a bounded linear operator by bounding
η(T ◦ Djui). When K = m, choosing T = Tr as the trace operator, we get the convergence in total
variation of the jump part Divj ui := Tr ◦Djui of the distributional divergence, appearing in (1.1) and
more precisely given by

Divj ui(ϕ) = (Tr ◦Djui)(ϕ) =
m∑
n=1

〈en, Djui(ϕ)en〉, (ϕ ∈ Cc(Ω)).

Here e1, . . . , em is the standard basis of Rm.

Corollary 3.1. Let Ω ⊂ Rm be open and bounded, and {ui}∞i=0 ⊂ SBV(Ω;RK). Suppose ψ : [0,∞)→
[0,∞) is non-decreasing with limt→∞ ψ(t)/t = ∞, and T : RK×m → R a bounded linear operator. If
each Djui ∈ [Spm−1(Ω, L,M)]K×m, (i = 0, 1, 2, . . .), and

sup
i
‖ui‖L1(Ω) +

∫
ψ(∇ui(x)) dx+ |Djui|(Ω) + Sp(Djui) + η(T ◦Djui) <∞, (3.29)

then there exists u ∈ SBV(Ω;RK) with Dju ∈ [Spm−1(Ω, L,M)]K×m, and a subsequence, unrelabelled,
such that (3.24)–(3.27) hold along with

T ◦Djui ∗⇀ T ◦Dju weakly* in M(Ω), and (3.30)

|T ◦Djui|(Ω)→ |T ◦Dju|(Ω). (3.31)

Proof. Theorem 3.2 shows that (3.24)–(3.27) hold. As an immediate consequence, we also get (3.30).
Now (3.31) follows from Theorem 3.1.

4. Technical results

We now prove a couple of general technical results that we will be needing in the proof of the approx-
imation theorem. We begin with a result on graph approximation, for which we need the following
elementary lemma.

Lemma 4.1. Let Γ ⊂ Rm be a Lipschitz (m− 1)-graph with normal field νΓ. Then

(νΓ ◦ gΓ)(v) = AΓ∇gΓ(v)/‖AΓ∇gΓ(v)‖, (a.e. v ∈ VΓ),

for the linear operator AΓ defined by

AΓG = (I −HΓG
∗)zΓ,
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with HΓ : z⊥Γ → Rm the injection operator and G : z⊥Γ → Rm an arbitrary linear operator. Moreover

‖AΓ‖ ≥ 1, (4.1)

and the map defined by
FΓ(G) := AΓG/max{1, ‖AΓG‖}

has Lipschitz factor Lip(FΓ) = 1.

Proof. For some fΓ : z⊥Γ → R we have gΓ(v) = HΓv + fΓ(v)zΓ and

∇gΓ(v) = HΓ + zΓ ⊗∇fΓ(v).

We have H∗ΓzΓ = 0 and

H∗Γ∇gΓ(v) = H∗ΓHΓ +H∗ΓzΓ ⊗∇f(v) = H∗ΓHΓ = I,

so that for any v′ ∈ z⊥Γ , v ∈ VΓ, we get

〈(I −HΓ(∇gΓ(v))∗)zΓ,∇gΓ(v)v′〉 = 0.

Since the tangent cone TΓ(gΓ(v)) = ∇gΓ(v)z⊥Γ a.e., this says that

νΓ(gΓ(v)) =
(I −HΓ(∇gΓ(v))∗)zΓ

‖(I −HΓ(∇gΓ(v))∗)zΓ‖
=

AΓ∇gΓ(v)

‖AΓ∇gΓ(v)‖
, (a.e. v ∈ VΓ). (4.2)

Thanks to H∗ΓzΓ = 0, we deduce that

‖AΓ‖ ≥ ‖zΓ −HΓG
∗zΓ‖ =

√
‖zΓ‖2 + ‖HΓG∗zΓ‖2 ≥ ‖zΓ‖ = 1,

with G : z⊥Γ → Rm an arbitrary linear operator of norm ‖G‖ = 1. Finally, thanks to ‖FΓG‖ ≤ ‖AΓG‖,
we have

‖FΓG1 − FΓG2‖ ≤ ‖AΓG1 −AΓG2‖ = ‖HΓ(G1 −G2)∗zΓ‖ ≤ ‖G1 −G2‖,

so that FΓ is Lipschitz with factor Lip(FΓ) = 1.

Lemma 4.2. Let Γ b Rm be a Lipschitz (m− 1)-graph with ∂Γ ⊂ int Ẑ and Hm−1(∂Ẑ ∩ Γ) = 0 for a
closed set Ẑ. Let {sk}∞k=0 ⊂ (0, s̄) with sk ↘ 0, (k →∞). Suppose that ∇gΓ ∈ BV(VΓ;Rm×z⊥Γ ). Then

we can find polyhedral Lipschitz graphs {Γk}∞k=0 of factor at most L′ = L′(Γ), satisfying ∂Γk ⊂ Ẑ,
zΓk = zΓ, VΓk ⊂ VΓ, (k = 0, 1, 2, . . .), and

Γk ⊂ Γ \ Ẑ +B(0, sk/2). (4.3)

We also have the convergences

Hm−1xΓk ∗⇀ Hm−1xΓ \ Ẑ weakly* in M(Rm), (k →∞), (4.4)

νΓkHm−1xΓk ∗⇀ νΓHm−1xΓ \ Ẑ weakly* in M(Rm;Sm−1), (k →∞). (4.5)

Regarding the maps {gΓk}∞k=0, we have ∇gΓk ∈ BV(VΓk ;Rm × z⊥Γ ) with

‖gΓk − gΓ‖L∞(V
Γk ;Rm) ≤ sk/2, (4.6)

‖νΓk ◦ gΓk − νΓ ◦ gΓ‖L1(V
Γk ;Rm) ≤ sk, and (4.7)

‖νΓk ◦ gΓk‖BV(V
Γk ;Rm) ≤ ‖∇gΓk‖BV(V

Γk ;Rm×z⊥Γ ) ≤ C11

(
‖gΓ‖L1(VΓ;Rm) + ‖∇gΓ‖BV(VΓ;Rm×z⊥Γ )

)
(4.8)

for some constant C11 = C11(m).
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Proof. Suppose we construct Γk := gΓk(Ṽ k) \ Ẑ for some gΓk : z⊥Γ → Rm of Lipschitz factor at most

L′, and polyhedral Ṽ k ⊂ VΓ with Γ ⊂ gΓ(Ṽ k) ∪ Ẑ. Then zΓk = zΓ and VΓk = g−1
Γk (Γk) ⊂ Ṽ k with

∂Γk ⊂ Ẑ holding. Moreover, (4.3) follows if we show (4.6).

Since ‖∇gΓk(v)‖ ≥ 1, (v ∈ Ṽ k), we deduce from Lemma 4.1 that νΓk ◦ gΓk = FΓk ◦ ∇gΓk for the
Lipschitz function FΓk . Since ‖∇gΓk(x)‖ ≥ 1 and ‖FΓk

(G)‖ ≤ 1 for all x,G, we find that

‖νΓk ◦ gΓk‖L1(V
Γk ;Rm) = ‖FΓk ◦ ∇gΓk‖L1(V

Γk ;Rm) ≤ ‖∇gΓk‖L1(V
Γk ;Rm).

If ∇gΓk ∈ BV(VΓk ;Rm× z⊥Γ ), it thus follows from the BV chain rule and Lip(FΓk) = 1 that νΓk ◦ gΓk ∈
BV(VΓk ;Rm) with

‖νΓk ◦ gΓk‖BV(V
Γk ;Rm) = ‖FΓk ◦ ∇gΓk‖BV(V

Γk ;Rm)

= ‖FΓk ◦ ∇gΓk ◦RzΓ‖BV(R−1
zΛ
V

Γk ;Rm)

≤ ‖x 7→ ∇gΓk(RzΓx)RzΓ‖BV(R−1
zΛ
V

Γk ;Rm×(m−1))

= ‖∇gΓk‖BV(V
Γk ;Rm×z⊥Γ ).

From the Lipschitz property of FΓk , we also deduce that

‖νΓk ◦ gΓk − νΓ ◦ gΓ‖L1(V
Γk ;Rm) = ‖FΓk ◦ ∇gΓk − FΓ ◦ ∇gΓ‖L1(V

Γk ;Rm)

≤ ‖∇gΓk −∇gΓ‖L1(V
Γk ;Rm×z⊥Γ ).

Thus (4.7) and (4.8) follow from showing

‖∇gΓk‖BV(V
Γk ;Rm×z⊥Γ ) ≤ C11

(
‖gΓ‖L1(VΓ;Rm) + ‖∇gΓ‖BV(VΓ;Rm×z⊥Γ )

)
, (4.9)

and, respectively,
‖∇gΓk −∇gΓ‖L1(V

Γk ;Rm×z⊥Γ ) ≤ s
k. (4.10)

Next we want to show that (4.4), (4.5) follow if we show (4.6) and (4.10). Indeed, let ϕ ∈ C∞c (Rm)
and define U := R−1

zΓ
Ṽ k, as well as g̃ = gΓ◦RzΓ and g̃k = gΓk◦RzΓ , where we recall thatRz : Rm−1 → z⊥

is the basis matrix of z⊥. Then the area formula gives∫
g
Γk (Ṽ k)

ϕdHm−1 −
∫
gΓ(Ṽ k)

ϕdHm−1

=

∫
U
ϕ(g̃k(x))Jm−1(∇g̃k(x)) dx−

∫
U
ϕ(g̃(x))Jm−1(∇g̃(x)) dx.

Employing the fact that the map (x, y) 7→ xy is Lipschitz on bounded sets, it follows that∣∣∣∣∣
∫
g
Γk (Ṽ k)

ϕdHm−1 −
∫
gΓ(Ṽ k)

ϕdHm−1

∣∣∣∣∣ ≤
∫
U

∣∣ϕ(g̃k(x))Jm−1(∇g̃k(x))− ϕ(g̃(x))Jm−1(∇g̃(x))
∣∣ dx

≤ C12

(∫
U

∣∣ϕ(g̃k(x))− ϕ(g̃(x))
∣∣ dx+

∫
U

∣∣Jm−1(∇g̃k(x))− Jm−1(∇g̃(x))
∣∣ dx) (4.11)

for some constant C12 = C12(ϕ,L′). Minding (4.6), the first integral of (4.11) goes to zero because
ϕ ∈ C∞c (Rm) is uniformly continuous. For the second integral, we observe from (4.10) that ∇g̃k
converges to ∇g̃ in L1, which we recall to imply almost uniform convergence for a subsequence. That
is, after possibly switching to an unrelabelled subsequence, for every ε > 0 there exists a measurable
subset E ⊂ Ω with Lm(Ω\E) < ε, and ∇g̃k → ∇g̃ uniformly on E. By the uniform Lipschitz continuity
of {gk}∞k=0, the values of ∇g̃k moreover lie in a bounded set. With these observations it now easily
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follows that the second integral of (4.11) also tends to zero. Thus the left hand side of (4.11) tends to
zero. We have therefore shown that

Hm−1xgΓk(Ṽ k) ∗⇀ Hm−1xgΓ(VΓ).

By assumption Hm−1(Γ ∩ ∂Ẑ) = 0, so that by Proposition 2.1

Hm−1xgΓk(Ṽ k) \ Ẑ ∗⇀ Hm−1xgΓ(VΓ) \ Ẑ. (4.12)

Minding the construction of Γk, we have both

Hm−1xΓk = Hm−1xgΓk(Ṽ k) \ Ẑ and Hm−1xgΓ(VΓ) \ Ẑ = Hm−1xΓ \ Ẑ. (4.13)

The convergence (4.4) now follows from (4.12) and (4.13). Since (4.5) can be shown in a similar fashion
with the help of (4.7), we skip the details.

It remains to construct gΓk and VΓk such that (4.6), (4.9), and (4.10) hold. To begin with, let {T`}∞`=0,
be a sequence of uniform triangulations of z⊥Γ , each a subdivision of the previous with edge length
approaching zero as `→∞. We then let

Ṽ` :=
⋃
{T ∈ T` | T ⊂ VΓ}.

For sufficiently large `, we have Γ \ Ẑ ⊂ gΓ(Ṽ`) and gΓ(∂Ṽ`) ⊂ int Ẑ. Since ∇gΓ ∈ BV(VΓ;Rm × z⊥Γ ),

we may by mollification approximate gΓ on Ṽ` by smooth functions gε, satisfying for sufficiently small
ε > 0 estimates of the type (4.6), (4.10) along with gε(∂Ṽ

k) ⊂ int Ẑ and

‖∇gε‖BV(Ṽ k;Rm×z⊥Γ )
≤ ‖∇gΓ‖BV(VΓ;Rm×z⊥Γ ).

Moreover, the Lipschitz factor of gε is bounded by that of gΓ. As a consequence of this approximation,
we may assume that

gΓ ∈W 1,∞(VΓ;Rm) ∩W 2,1(VΓ;Rm). (4.14)

For each ` = 0, 1, 2, . . ., we denote by {x`,n}M`
n=1 the nodal points of the triangulation T`. Define ϕ`,n

such that it is affine on each T and

suppϕ`,n ⊂ K`,n :=
⋃

T∈T`:x`,n∈∂T
T.

We then define gk : Ṽ k → Rm as

gk :=

M`(k)∑
n=1

ϕ`(k),ng(x`(k),n), (k = 0, 1, 2, . . .)

for some `(k) ≥ k. That is, gk is the Lagrange interpolation of g on T`(k). Minding that we have without

loss of generality assumed (4.14), choosing `(k) is sufficiently large, we observe that gk satisfies for
some constant C13 = C13(m, T 1) the standard finite element estimates (see, e.g., [5])

‖gk‖
W 1,∞(Ṽ k;Rm)

≤ C13‖gΓ‖W 1,∞(VΓ;Rm),

‖gk − gΓ‖L∞(Ṽ k;Rm)
≤ sk/2, and

‖∇gk −∇gΓ‖L1(Ṽ k;Rm×m)
≤ sk/4, (k = 0, 1, 2, . . .).

In particular, gk has Lipschitz factor at most L′(Γ) = C13‖gΓ‖W 1,∞(VΓ;Rm), and (4.6), (4.10) are
satisfied. Finally, to show (4.9), we observe that

‖∇gk‖BV(V
Γk ;Rm×z⊥Γ ) ≤ C14‖gΓ‖W 2,1(VΓ;Rm), (k = 0, 1, 2, . . .), (4.15)
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for some constant C14 = C14(m, T 1). For piecewise affine shape functions, this does not follow from
standard results due to insufficient regularity. If we use smooth (or W 2,1) shape functions, we however
get by standard results (see [5, Theorem 4.5.11]) that

‖∇gk‖BV(V
Γk ;Rm×z⊥Γ ) ≤ ‖g

k‖W 2,1(V
Γk ;Rm) ≤ C14‖gΓ‖W 2,1(VΓ;Rm), (k = 0, 1, 2, . . .).

Thus, to get (4.15), we can simply approximate the piecewise affine shape functions by smooth shape
functions on the same triangulation T k and pass to the limit. (To construct such smooth shape
functions, for each ϕ = ϕ`,n with support K = K`,n, we may take a sequence of functions {ψi}∞i=0 such
that ψi ≡ 1 on {x ∈ K | dist(∂K, x) > 1/i}, and ψi ≡ 0 on {x ∈ K | dist(∂K, x) < 2/i}. As smooth
approximations of ϕ supported on K, we take we take ϕi := (ρ1/(2i) ◦ R−1

zΛ
) ∗ (ψiϕ), (i = 0, 1, 2, . . .).

Here {ρε}ε>0 are the standard mollifiers on Rm−1 = R−1
zΛ
z⊥Γ .)

Lemma 4.3. Let F be a finite collection of maps ψ ∈ C1(cl Ω× Rm × Rm × Sm−1). Denote

Tψu := ψ(·, u+, u−, νJu)Hm−1xJu, (ψ ∈ F). (4.16)

Suppose that F includes the functions ψνi : (x, u+, u−, ν) 7→ νi, and ψ±i : (x, u+, u−, ν) 7→ (u±)i for
i ∈ {1, . . . ,m}. Let {v, w0, w1, w2, . . .} ⊂ SBV(Ω;RK) ∩ L∞M (Ω;RK) satisfy

sup
k
Hm−1(Jwk) <∞, (4.17)

sup
k
η(Tψw

k) <∞, (ψ ∈ F), (4.18)

νJ
wk
Hm−1xJwk

∗⇀ νJvHm−1xJv weakly* in M(Ω;Sm−1), and, (4.19)

(wk)±Hm−1xJwk
∗⇀ v±Hm−1xJv weakly* in M(Ω;Rm). (4.20)

Then, after possibly moving to an unrelabelled subsequence, we have Tψw
k ∗⇀ Tψv and |Tψwk| ∗⇀ |Tψv|

for all ψ ∈ F .

Proof. Let ψ ∈ F . The function ψ is bounded on the compact set cl Ω×clB(0,M)×clB(0,M)×Sm−1),
so that, minding ‖wk‖L∞(Ω;Rm) ≤ M , the sequence {Tψwk}∞k=0 is also bounded in M(Ω). Therefore,

after possibly moving to a subsequence, we may assume the measures {Tψwk}∞k=0 to converge weakly*
to some ωψ ∈ M(Ω), and the measures {|Tψwk|}∞k=0 to converge weakly* to some λψ ∈ M(Ω). By
(4.18) and Theorem 3.1 it follows that λψ = |ωψ|.

The question remains, whether ωψ = Tψv. Indeed, it follows from the weak* convergences (4.19)
and (4.20) that ωψ = Tψv for ψ = ψνi , ψ

±
i , (i = 1, . . . ,m). In particular

µwk
∗⇀ µv and |µwk |(Ω)→ |µv|(Ω). (4.21)

for µu := (u+, u−, νJu)Hm−1xJu ∈M(Ω;Rm × Rm × Sm−1).

Minding that ‖νJu(x)‖ = 1, we may now write for f ∈ C∞c (Ω) and

ψf (x, a, b, z) := f(x)ψ

(
x,

a

‖z‖
,
b

‖z‖
,
z

‖z‖

)
‖z‖

that ∫
Ω
f(x) dTψu(x) =

∫
Ω
f(x)ψ

(
x, u+(x), u−(x), νJu(x)

)
dHm−1xJu

=

∫
Ω
f(x)

ψ
(
x, u+(x), u−(x), νJu(x)

)∥∥(u+(x), u−(x), νJu(x)
)∥∥ d|µu|(x).

=:

∫
Ω
ψf

(
x,

dµk

d|µk|

)
d|µu|(x).
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The function ψf is continuous, because ψ is C1, ‖νJu(x)‖ = 1, and

1/‖z(x)‖ = ‖(u+(x), u−(x), νJu(x))‖/‖νJu(x)‖ = ‖(u+(x), u−(x), νJu(x))‖ ≤
√

2M2 + 1.

It therefore follows from the Reshetnyak continuity theorem (see, e.g., [3, Theorem 2.39]) and (4.21)
that Tψw

k ∗⇀ Tψv. Hence µψ = Tψv.

Next we prove a trace result.

Proposition 4.1. Let V ⊂ Rm−1 be an open and bounded, f : V → R Lipschitz continuous of factor
L, and % > 0. Define

Ω := {(x, s) ∈ V × R | s ∈ f(x) + (−%, %)},

and g(x) := (x, f(x)). Suppose u ∈ W 1,∞(Ω). Then u has a trace uΓ on Γ := g(V ), and uΓ ◦ g ∈
W 1,∞(V ) with

‖uΓ ◦ g‖W 1,∞(V ) ≤ C15‖u‖W 1,∞(Ω) (4.22)

for some constant C15 = C15(L,m).

Proof. The existence of a trace uΓ ∈ L1(Γ) follows from standard results. We just have show that
uΓ ◦ g is Lipschitz on V . Let us set U := V × (−%, %) and

v(x, s) := u(x, f(x) + s) = u(g̃(x, s)) ((x, s) ∈ U),

where g̃(x, s) := g(x) + (0, s). We have

∇g̃(x, s) =

(
∇g(x)

0

)
+

(
0 0
0 1

)
, ((x, s) ∈ U),

as well as
∇v(x, s) = ∇g̃(x, s)∇u(g̃(x, s)),

so that clearly v ∈W 1,∞(U) with the bound

‖v‖W 1,∞(U) ≤ C16‖u‖W 1,∞(Ω) (4.23)

for some constant C16 = C16(L,m).

Since u is (Lipschitz) continuous, as is v, we observe that uΓ ◦ g = v0 := v(·, 0). But clearly, still
by continuity, Lipschitz continuity is preserved by traces on affine sets, in particular on V × {0}. We
therefore obtain

‖v0‖W 1,∞(V ) ≤ ‖v‖W 1,∞(U). (4.24)

Combining (4.23), (4.24) shows (4.22).

Proposition 4.2. Let V ⊂ Rm−1 be an open and bounded, f : V → R Lipschitz continuous of factor
L, and % > 0. Define

Ω := {(x, s) ∈ V × R | s ∈ f(x) + (−%, %)}, Ω± := {(x, s) ∈ V × R | s ∈ f(x) + (0,±%)},

and g(x) := (x, f(x)). Let Γ := g(V ). Suppose u ∈W 1,∞(Ω\Γ) with Hm−1({x ∈ Γ | u+(x)−u−(x)}) =
0. Then there exist extensions v(±) ∈W 1,∞(Ω) of u|Ω±, satisfying

‖v(±)‖L∞(Ω) ≤ ‖u‖L∞(Ω±) and ‖v(±)‖W 1,∞(Ω) ≤ C17‖u‖W 1,∞(Ω±) (4.25)

for some C17 = C17(L,m, u). Moreover

Lm({x ∈ Ω | v(+)(x) = v(−)(x)} = 0. (4.26)
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Proof. From Proposition 4.1, we deduce that

‖u± ◦ g‖W 1,∞(V ) ≤ C15‖u‖W 1,∞(Ω)

for C15 = C15(L,m). Let q0, q1 : R+ → R+ be the saw-tooth functions that oscillate between the
values 0 and 1 at slope |q′0| = |q′1| = 2‖∇u‖L∞(Ω), with initial values q0(0) = 0 and q1(0) = 1. Let

p(x) := g(P⊥(0,1)(x)) be the projection of x on Γ (along zΓ = (1, 0)). Then the functions u± ◦ p are

Lipschitz with factor at most L‖∇u‖L∞(Ω±;Rm). Consequently, defining

v(±)(x) =

{
u(x), x ∈ Ω±,

q1(‖x− p(x)‖)u±(p(x)) + q0(‖x− p(x)‖)u∓(p(x)), x ∈ Ω∓,

and minding that u± and q0, q1 are bounded, we find that v± are Lipschitz and (4.25) holds for some
C17 = C17(L,m, u). Moreover, we deduce (4.26) thanks to Hm−1({x ∈ Γ | u+(x)− u−(x)}) = 0 and

L1({s ∈ f(x) + (−δ, δ) | v(+)(x, s) = v(−)(x, s)}), (a.e. x ∈ V ).

The latter follows from the fact that by construction the functions x 7→ qi(‖x − p(x)‖), (i = 0, 1,),
oscillate faster than u on lines {y} × R, (y ∈ V ).

Remark 4.1. The property (4.26) together with preserving the L∞ bound in (4.25) are the reason
for not using standard Sobolev or Lipschitz (cf. [10]) extension results.

Remark 4.2. Both Proposition 4.1 and Proposition 4.2 can easily by a rotation argument be extended
to domains Ω = gΓ(VΓ) + zΓ(−%, %) defined by a general Lipschitz graph Γ.

5. The space and boundary covers

We now introduce the space A(Ω;RK) of functions admissible for the approximation theorem stated
in the next section.

Definition 5.1. Given an open set Ω ⊂ Rm with Lipschitz boundary, we denote by A(Ω;RK) the set
of functions u : Ω→ RK that are in W 1,∞(Ω\J ;RK) for a (with respect to Ω) compact set J = Ĵu ⊂ Ω
satisfying the following:

(i) Hm−1(J \ Ju) = 0.
(ii) J =

⋃N
i=1 Λi, where Λi is a Lipschitz (m− 1)-graph of constant at most L.

(iii) Λi ∩ Λn ⊂ ∂Λi ∪ ∂Λn and Λi ∩ ∂Ω ⊂ ∂Λi. with ∂Λi := gΛi(∂VΛi), (i, n = 1, . . . , N ; i 6= n),
(iv) J ∈ Spm−1(Ω, L,M) for some M ∈ (0,∞).
(v) Each VΛi , (i = 1, . . . , N) has Lipschitz boundary.
(vi) ∇gΛi ∈ BV(VΛi ;Rm × z⊥Λi

), (i = 1, . . . , N).

We will henceforth use the shorthand notation Vi := VΛi , gi := gΛi , and zi := zΛi .

Remark 5.1. Observe that if {ui}∞i=0 ⊂ A(Ω;RK) with the same constants L,M , i.e., Ĵui ∈
Spm−1(Ω, L,M), and if

sup
i
‖ui‖

W 1,∞(Ω\Ĵui )
+Hm−1(Ĵui) + Sp(Ĵui) <∞,

then it follows from Theorem 3.2 and Proposition 3.2 that there exists u ∈ SBV(Ω;RK) with
Ĵu ∈ Spm−1(Ω, L,M) such that the convergences (3.24)–(3.27) hold for a subsequence. Similar closure
properties for sets within the space A(Ω;RK) itself would depend on further limiting the complexity
and number of the graphs {Λi}Ni=1.
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In the remainder of this section we provide a series of technical lemmas studying the covering of⋃N
i=1 ∂Λi by cubes on a grid. We begin by definitions related to the cover.

Definition 5.2. We denote rQ := [0, r]m and rQ0 := [0, r)m for r > 0.

Definition 5.3. Suppose Z = X+ rQ for some set X ⊂ y+ rZm with r > 0 and y ∈ Q0. We then say
that E ⊂ ∂Z is a face of Z if for some ξ ∈ X the set E − ξ is a face of rQ, i.e., for some i = 1, . . . ,m
and θ ∈ {0, 1}, we have E = ξ + r{x ∈ Q | 〈x, ei〉 = θ}.

Definition 5.4. Suppose J =
⋃N
i=1 Λi is as in Definition 5.1. Denote ∂̃J :=

⋃N
i=1 ∂Λi. Then for r > 0

and y ∈ Q0, we let

F̄r := {ξ ∈ rZm | (ξ + 2rQ) ∩ ∂̃J 6= ∅},
F yr := ry + F̄r, and

Zyr := F yr + rQ.

The sets Zyr , (y ∈ Q0), are the covers of the boundary we are interested in. We now show a bound
on the size of the cover, and then an average density estimate for sets in the neighbourhood of this
family of covers. Then we will prove further lemmas.

Lemma 5.1. Let J be as in Definition 5.1. There then exists a constant C18 = C18(J) such that for
each r > 0 and i = 1, . . . , N there are K ≤ Cr2−m open balls B1, . . . , BK of diameter at most r with
∂VΛi ⊂

⋃K
k=1Bk.

Proof. This is a consequence of the Lipschitz boundary property Definition 5.1(v). We take an open
cover U1, . . . , UM of ∂VΛi such that ∂VΛi ∩ Un is a Lipschitz graph (in the (m− 1)-dimensional space
z⊥Λi

) for each n = 1, . . . ,M . Each of the sets ∂VΛi ∩Un, may, as a Lipschitz graph of dimension m− 2,
trivially be covered by Ci,nr

2−m open balls of diameter at most r, for some Ci,n = Ci,n(J).

Lemma 5.2. #F̄r ≤ C19r
2−m for C19 = C19(J).

Proof. One simply considers the cover of ∂Vi by K ≤ Cr2−m balls B1, . . . BK of diameter r from
Lemma 5.1. Since gi is Lipschitz of factor at most L, covering the images gi(Bn) by squares rQ + ξ
with ξ ∈ rZm produces the claim.

Lemma 5.3. Let J be as in Definition 5.1 and J ′ =
⋃N ′

i=1 Λ′i for Lipschitz (m − 1)-graphs {Λ′i}N
′

i=1.
Then there exists a constant C20 = C20(J,N ′,m) such that for every r > 0 and h ∈ (0, r], we have the
bound ∫

Q0

Hm−1
(
J ′ ∩ (Zyr +B(0, h)) \ Zyr

)
dy ≤ C20h. (5.1)

Proof. As χF y
r +rQ(x) =

∑
ξ∈F̄r

χξ+ry+rQ(x) for Lm-a.e. y ∈ Q0, we begin by calculating∫
Q0

χF y
r +rQ(x) dy =

∫
Q0

∑
ξ∈F̄r

χξ+ry+rQ(x) dy = r−m
∑
ξ∈F̄r

∫
rQ0

χξ+y+rQ(x) dy.

Using χF y
r +rQ+B(0,h)(x) ≤

∑
ξ∈F̄r

χξ+ry+rQ+B(0,h)(x), we similarly get the inequality∫
Q0

χF y
r +rQ+B(0,h)(x) dy ≤ r−m

∑
ξ∈F̄r

∫
rQ0

χξ+y+rQ+B(0,h)(x) dy.
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Denoting the left hand side of (5.1) by Ar,h, we may now write

Ar,h =

∫
Q0

∫
J ′
χZy

r +B(0,y)(x)− χZy
r
(x) dHm−1(x) dy

=

∫
J ′

∫
Q0

χF y
r +rQ+B(0,h)(x)− χF y

r +rQ(x) dy dHm−1(x)

≤ r−m
∫
J ′

∑
ξ∈F̄r

∫
rQ0

χξ+y+rQ+B(0,h)(x)− χξ+y+rQ(x) dy dHm−1(x)

= r−m
∑
ξ∈F̄r

∫
J ′

∫
rQ0

χ(ξ+rQ+B(0,h))\(ξ+rQ)(x− y) dy dHm−1(x).

Employing the fact that J ′ =
⋃N ′

i=1 Λ′i with Λ′i (Lipschitz) graphs, we deduce the existence of a constant
C21 = C21(N ′,m) such that∫

J ′

∫
rQ0

χE(x− y) dy dHm−1(x) ≤ C21r
m−1

∫
J ′−B(0,rm)

χE(x) dx (5.2)

for Borel sets E. Indeed, let Λ = Λ′i and z = zΛ′i
. Then, since

Q0 ⊂ PzQ0 + P⊥z Q0 ⊂ B(0,m),

we have ∫
Λ

∫
rQ0

χE(x− y) dy dHm−1(x) ≤
∫

Λ

∫
PzrQ0

∫
P⊥z rQ0

χE((x− t)− y) dy dt dHm−1(x)

=

∫
P⊥z rQ0

∫
Λ−PzrQ0

χE(x− y) dx dy

≤
∫
P⊥z rQ0

dy

∫
Λ−PzrQ0−P⊥z rQ0

χE(x) dx

≤ C22r
m−1

∫
Λ−B(0,rm)

χE(x) dx.

In the final step we have employed the fact that Lm−1(P⊥z rQ0) ≤ C22r
m−1 for some constant C22 =

C22(m). Summing over the estimates for Λ = Λ′1, . . . ,Λ
′
N ′ now gives (5.2).

With (5.2) at our disposal, we may now calculate that

Ar,h ≤ C21r
−m

∑
ξ∈F̄r

rm−1

∫
J ′−B(0,rm)

χ(ξ+rQ+B(0,h))\(ξ+rQ)(x) dx

= C21r
−1
∑
ξ∈F̄r

Lm
(
(J ′ −B(0, rm)) ∩ (ξ + rQ+B(0, h)) \ (ξ + rQ)

)
≤ C21r

−1
∑
ξ∈F̄r

Lm
(
(ξ + rQ+B(0, h)) \ (ξ + rQ)

)
≤ C21C23hr

m−2#F̄r

(5.3)

Here we have finally employed the assumption h ∈ (0, r], from which it follows that

Lm
(
(rQ+B(0, h)) \ rQ

)
≤ C23hr

m−1

for some C23 = C23(m). By Lemma 5.2, we have #F̄r ≤ C19r
2−m. Hence

Ar,h ≤ C21C23C19h,

which gives (5.1).
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Lemma 5.4. Let J be as in Definition 5.1 and J ′ =
⋃N ′

i=1 Λ′i for Lipschitz (m − 1)-graphs {Λ′i}N
′

i=1.
Then ∫

Q0

Hm−2(J ′ ∩ ∂Zyr ) dy ≤ C24, (r > 0),

for some C24 = C24(J,N ′,m).

Proof. Let Hr :=
∑m

i=1(rZei + e⊥i ). We observe that

J ′ ∩ ∂Zyr ⊂ J ′ ∩ Zyr ∩ (ry +Hr) ⊂
(
J ′ ∩

⋃
y′∈Q0

Zy
′
r

)
∩ (ry +Hr).

Pick any ŷ ∈ Q0. Then⋃
y′∈Q0

Zy
′
r =

⋃
y′∈Q0

(F̄r + ry′ + rQ) ⊂ F̄r + rŷ + rQ+ [−1, 1]rQ = Z ŷr + [−1, 1]rQ,

so that setting
J ŷr := J ′ ∩ (Z ŷr + [−1, 1]rQ),

gives
J ′ ∩ ∂Zyr ⊂ J ŷr ∩ (ry +Hr). (5.4)

Next we deduce for some C25 = C25(J,N ′,m) that∫
Q0

Hm−1(J ′ ∩ (Zyr + [−1, 1]rQ)) ≤ C25r.

This can be shown analogously to Lemma 5.3, minding in the step corresponding to (5.3) that

Lm((J ′ −B(0, rm)) ∩ (ξ + rQ+ [−1, 1]rQ)) ≤ (3r)m.

We may therefore choose ŷ ∈ Q0 with

Hm−1(J ŷr ) = Hm−1(J ′ ∩ (Z ŷr + [−1, 1]rQ)) ≤ C25r.

The claim of the present lemma is now established by reasoning∫
Q0

Hm−2(J ′ ∩ ∂Zyr ) dy ≤
∫
Q0

Hm−2(J ŷr ∩ (ry +Hr)) dy

≤
m∑
i=1

∫
Q0

Hm−2(J ŷr ∩ (ry + rZei + e⊥i )) dy

=

m∑
i=1

∑
n∈Z

∫ 1

0
Hm−2(J ŷr ∩ (r(s+ n)ei + e⊥i )) ds

=

m∑
i=1

∫
R
Hm−2(J ŷr ∩ (rsei + e⊥i )) ds

≤ m

r
Hm−1(J ŷr ) ≤ C25m.

In the first inequality we have employed (5.4), and in the second-to-last inequality the coarea formula.

Lemma 5.5. Let J =
⋃N
i=1 Λi be as in Definition 5.1. Then ∂̃J ⊂ int

⋂
y∈Q0

Zyr .
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Proof. First we observe that
∂̃J ⊂ int

(
(∂̃J − rQ) ∩ rZm + rQ

)
. (5.5)

Indeed, let x = (x1, . . . , xm) ∈ ∂̃J . For any i ∈ {1, . . . ,m}, if there exists z ∈ (xi − (0, r)) ∩ rZ, then
clearly

xi ∈ int
(
z + [0, r]

)
⊂ int

([
(∂̃J − rQ) ∩ rZm + rQ

]
i

)
.

Otherwise, if (xi − (0, r)) ∩ rZ = ∅, then xi ∈ rZ. It follows that

xi ∈ int
(
(xi − r + [0, r]) ∪ (xi + [0, r])

)
⊂ int

([
(∂̃J − rQ) ∩ rZm + rQ

]
i

)
.

We conclude that (5.5) holds.

Next we observe that

(∂̃J − rQ) ∩ rZm + rQ ⊂ (∂̃J − 2rQ) ∩ rZm + ry + rQ = Zyr , (y ∈ Q0). (5.6)

Indeed, let again x = (x1, . . . , xm) satisfy x ∈ (∂̃J − rQ) ∩ rZm + rQ. Then

xi = rk + ra and rk = z − rq

for some k ∈ Z, a ∈ [0, 1], z ∈ ∂̃J and q ∈ [0, 1]. We want to show that

xi = rn+ ry + rb and rn = z̄ − 2rp

for some b ∈ [0, 1], n ∈ Z, z̄ ∈ ∂̃J and p ∈ [0, 1].

If a ≥ y, this is satisfied when b = a− y and n = k, as well as z̄ = z and p = q.

If a < y, we pick b = 1− y + a and n = k − 1, as well as p = (q + 1)/2 and z̄ = z.

We have thus shown (5.6), whence also

(∂̃J − rQ) ∩ rZm + rQ ⊂
⋂
y∈Q0

Zyr .

Recalling (5.5) it now follows that ∂̃J ⊂ int
⋂
y∈Q0

Zyr .

Lemma 5.6. Let J =
⋃N
i=1 Λi be as in Definition 5.1 and J ′ a Hm−1-rectifiable set. Pick r > 0, some

yr ∈ Q0, as well as ` satisfying h` ∈ (0, r), Define Zr := Zyrr , Fr := F yrr , and

µr,` := Hm−1x∂Zr +Hm−1x(J ′ \ Zr).

Then
Sp`(µr,`;G`) ≤ Hm−1(J ′ \ Zr) + C28h` (5.7)

for some C28 = C28(J) and

G` := {Γx` := ∂Zr ∩B(x, h`) | B(x, h`) intersects at most one face of Zr}.

Proof. Denote by Er,`, (` = 0, 1, 2, . . .) the points x ∈ Rm such that B(x, h`) touches more than one
face of Zr. Then B(x,

√
mh`) touches more than one face of some cube ξ + rQ, ξ ∈ Fr. Consequently,

Er,` ⊂ Fr + rH +B(x,
√
mh`),

where H denotes the union of all the edges of Q, of the form

{z ∈ Q | 〈ei, z〉 = θi, 〈ek, z〉 = θk}, where i, k = 1, . . . ,m; i 6= k; θi ∈ {0, 1}.
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We may now calculate that∫
Er,`

(Hm−1x∂Zr)(τxf`) dx ≤ (Hm−1x∂Zr)(Er,` +B(0, h`))

≤
∑
ξ∈Fr

(Hm−1x∂Zr)(ξ + rH +B(0, (1 +
√
m)h`))

≤ #FrC26Hm−1(r∂Q ∩ (rH +B(0, 2
√
mh`)))

for some C26 = C26(m). We recall that #F≤r C19r
2−m. If 2

√
mh` < r, we may thus continue to calculate

#FrC26Hm−1(r∂Q ∩ (rH +B(0, 2
√
mh`))) ≤ #FrC27r

m−2h` ≤ C28h`

for some constants C27 = C27(m) and C28 = C28(J,m). If, on the other hand, 2
√
mh` ≥ r, we may

calculate

#FrC26Hm−1(r∂Q ∩ (rH +B(0, 2
√
mh`))) ≤ #FrC27r

m−1 = C19C27r ≤ C28h`.

Thus ∫
Er,`

(Hm−1x∂Zr)(τxf`) dx ≤ C28h`. (5.8)

Minding the definition of µr,`, and recalling from Definition 3.2 the notation Ox` := supp τxf`, we
can continue to calculate∫

Er,`

|µr,`|(τxf`) dx ≤
∫
Er,`

|µr,`xOx` \ ∂Zr|(τxf`) dx+

∫
Er,`

(Hm−1x∂Zr)(τxf`) dx

≤
∫
Er,`

|µr,`xOx` \ ∂Zr|(τxf`) dx+ C28h`.

(5.9)

Let us then observe that, by the choice of Γx` , since B(x, h`) for x ∈ Rm \ Er,` intersects at most one
face of ∂Zr, we have∫

Rm\Er,`

|µr,`xOx` \ Γx` |(τxf`) dx =

∫
Rm\Er,`

|µr,`xOx` \ ∂Zr|(τxf`) dx,

so that combining with (5.9) yields

Sp`(µr,`;G`) =

∫
Er,`

|µr,`|(τxf`) dx+

∫
Rm\Er,`

|µr,`xOx` \ Γx` |(τxf`) dx

≤
∫
Rm

|µr,`xOx` \ ∂Zr|(τxf`) dx+ C28h`.

(5.10)

Minding the definition of µr,`, we get

|µr,`xOx` \ ∂Zr|(τxf`) = (Hm−1xJ ′ \ Zr)(τxf`).

Thus (5.7) follows from (5.10).

Remark 5.2. Each Γx` ∈ G` in the above lemma is clearly a Lipschitz graph that satisfies (3.13).

6. The main approximation theorem

We now reach our main result. The space A(Ω;RK) of admissible functions is defined in Definition
5.1, and the operators Tψ, (ψ ∈ F) in (4.16). We recall that the same (fixed) regular nested sequence
of functions {(f`, ν`)}∞`=0 with corresponding regularity constants {h`}∞`=0 (see Definition 3.1) is used
for the definition of both η and Sp (see Theorem 3.1 and Definition 3.2, respectively).

26



Theorem 6.1. Suppose u ∈ A(Ω;RK). Let F be a finite collection of maps ψ ∈ C1(cl Ω×Rm×Rm×
Sm−1). Then there exists a sequence {ui}∞i=0 ⊂ A(Ω;RK) such that each set Ĵui from Definition 5.1 is
polyhedral, and

ui → u strongly in L2(Ω;Rm), (6.1)

∇ui → ∇u strongly in L2(Ω;RK×m), (6.2)

Djui ∗⇀ Dju weakly* in M(Ω;RK×m), (6.3)

Hm−1(Jui)→ Hm−1(Ju), (6.4)

Tψu
i ∗⇀ Tψu weakly* in M(Ω), and (6.5)

η(Tψu
i)→ η(Tψu), (ψ ∈ F). (6.6)

In particular, it can be ensured that |Djui|(Ω)→ |Dju|(Ω) and |Divj ui|(Ω)→ |Divj u|(Ω).

Proof. We divide the proof into three steps: (Step 1) Construction of approximating sequences, (Step 2)
convergence of the preliminary approximations vr to u, and (Step 3) convergence of the approximations
wkr to the preliminary approximations vr.

Step 1: Construction of approximating sequences We let {Λi}Ni=1 be the Lipschitz graphs from

Definition 5.1 for u and use the shorthand notation J = Ĵu. We let Mu := ‖u‖L∞(Ω;RK) and denote by
L the maximal Lipschitz factor of gi := gΛi , (i = 1, . . . , N). We pick r ∈ (0, 1), fixed for the moment.
We recall from Definition 5.4 that

∂̃J :=

N⋃
i=1

∂Λi,

F̄r := {ξ ∈ rZm | (ξ + 2rQ) ∩ ∂̃J 6= ∅},
F yr := ry + F̄r, and

Zyr := F yr + rQ.

We further let
Z̃r :=

⋂
y∈Q0

Zyr .

Definition 5.1(iii) and Lemma 5.5 then yield that

Λi ∩ Λn ⊂ ∂̃J ⊂ int Z̃r and Λi ∩ ∂Ω ⊂ int Z̃r, (i 6= n), (6.7)

With s̄r ∈ (0, r) still to be determined, let us set (see Figure 2)

Ẑr := {x ∈ Z̃r | min
x′∈∂Z̃r

‖x− x′‖ ≥ s̄r}, and

Ui,r := (Λi \ Ẑr) + (−1, 1)s̄rzi, (i = 1, . . . , N),

and denote by U±i,r the halves into which Ui,r split by Λi. From the fact that Λi∩∂Ω ⊂ ∂Λi (Definition
5.1(iii)), we deduce that Ui,r ⊂ Ω for small enough s̄r. Moreover, we may and do choose s̄r such that

Hm−1(∂Ẑr ∩ J) = 0, (as we can pick Hm−2(∂Ẑr ∩ J) <∞),

Λi ∩ Λn ⊂ int Ẑr, (i 6= n), (minding (6.7)),

∂Ui,r \ (Λi + {−1, 1}s̄rzi) ⊂ Z̃r, (6.8)

∂Λi ∩ Ui,r = ∅ and

Ui,r ∩ (Λn ∪ Un,r) = ∅, (i 6= n).
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Ẑr

Ẑr

Ẑr
Λ1

Λ2

U+
2,r

U−2,r

Figure 2: Some of the construction in Theorem 6.1. The dotted line represents Z̃r ⊃ Ẑr. The dashed
line bounds U2,r and together with Λ2, the sides U±2,r.

Next, we approximate the surfaces Λi \ Ẑr. We choose a sequence {skr}∞k=0 ⊂ (0, s̄r) with skr ↘ 0.
Lemma 4.2 then gives sequences {Λki,r}∞k=0, (i = 1, . . . , N), of polyhedral Lipschitz graphs of factor at
most L′, satisfying

Hm−1xΛki,r
∗⇀ Hm−1xΛi \ Ẑr weakly* in M(Rm), (6.9)

νΛk
i,r
Hm−1xΛki,r

∗⇀ νΛiHm−1xΛi \ Ẑr weakly* in M(Rm;Sm−1), (6.10)

Λki,r ⊂ Λi \ Ẑr +B(0, skr/2), and (6.11)

‖νΛk
i,r
◦ gki,r‖BV(V k

i,r;Rm) ≤ C29, (i = 1, . . . , N ; k = 0, 1, 2, . . .), (6.12)

for some constant

C29 = C29

(
m,max

i
(‖gΛi‖L1(VΛi

;Rm) + ‖∇gΛi‖BV(VΛi
;Rm×z⊥Λi

))
)
<∞,

independent from r. (We will always explicitly indicate any dependency on r.) It follows from (6.11)
and Ui,r ∩ Un,r = ∅ that(

Λki,r +B(0, s̄r − skr )
)
∩
(
Λkn,r +B(0, s̄r − skr )

)
= ∅, (i 6= n; k = 0, 1, 2, . . .), (6.13)

Moreover, we may again split Ui,r \ Ẑr into two halves Uk,±i,r by Λki,r, (k = 0, 1, 2, . . .), signs chosen

consistently with U±i,r.

We next want to extend u from both sides of Λi,r to all of Ui,r. Indeed, Proposition 4.2 provides

extensions v
(±)
i,r ∈W 1,∞(Ui,r;RK) of u|U±i,r ∈W 1,∞(U±i,r;RK), satisfying

‖v(±)
i,r ‖L∞(Ui,r;RK) ≤ ‖u‖L∞(U±i,r;RK) and ‖v(±)

i,r ‖W 1,∞(Ui,r;RK) ≤ C17‖u‖W 1,∞(U±i,r;RK) (6.14)

for some C17 = C17(L,m, u). Moreover

Lm(Ai,r) = 0 for Ai,r = {x ∈ Ui,r | v(+)
i,r (x) = v

(−)
i,r (x)}. (6.15)

Since VΛk
i,r

is polyhedral and hence has Lipschitz boundary, by (6.14) and Proposition 4.1 (after a

trivial rotation of the domain), v
(±)
i,r has a trace on Λki,r, satisfying

‖v(±)
i,r ◦ g

k
i,r‖W 1,∞(V

Λk
i,r

;RK) ≤ C15‖v(±)
i,r ‖W 1,∞(Ui,r;RK) ≤ C30 (6.16)

for some constants C15 = C15(L′,m− 1) and C30 = C30(u,m, {Λi}Ni=1). From the construction of Ui,r

it can be easily observed that Hm−1(Λi ∩ ∂Ui,r) = 0. Because v
(±)
i,r ∈ W 1,∞(Ui,r) ⊂ C(Ui,r), referring

to Proposition 2.1 it hence follows from (6.9) that

v
(±)
i,r H

m−1xΛki,r
∗⇀ v

(±)
i,r H

m−1xΛi \ Ẑr weakly* in M(Rm;RK). (6.17)
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The next step is to choose some yr ∈ Q0 with desirable properties. Let us set J̃kr :=
⋃N
i=1 Λki,r and

begin by observing that Lemma 5.3 provides a constant C31 = C31(J,N,m,Ω) such that∫
Q0

∑
h`≤r
Hm−1

(
(J ′ ∪ ∂Ω) ∩ (Zyr +B(0, 2h`)) \ Zyr

)
dy ≤ C31

∑
h`≤r

h`, (J ′ = J, J̃0
r , J̃

1
r , J̃

2
r , . . .).

Likewise from Lemma 5.4 it follows that∫
Q0

Hm−2((J ′ ∪ ∂Ω) ∩ ∂Zyr ) dy ≤ C24, (J ′ = J, J̃0
r , J̃

1
r , J̃

2
r , . . .).

for some constant C24 = C24(J,N,m,Ω). Application of Fatou’s inequality with J ′ = J̃kr , (k =
0, 1, 2, . . .), now gives

I1 :=

∫
Q0

lim inf
k→∞

(
MuHm−2((J̃kr ∪ ∂Ω) ∩ ∂Zyr ) +

∑
h`≤rHm−1

(
(J̃k

r ∪∂Ω)∩(Zy
r +B(0,2h`))\Zy

r

)∑
h`≤r h`

)
dy ≤ C32

for C32 = C31 +MuC24. Likewise setting J ′ = J gives

I2 :=

∫
Q0

(
MuHm−2((J ∪ ∂Ω) ∩ ∂Zyr ) +

∑
h`≤rHm−1

(
(J∪∂Ω)∩(Zy

r +B(0,2h`))\Zy
r

)∑
h`≤r h`

)
dy ≤ C32.

It follows that
I1 + I2 ≤ C33

for some constant C33 = C33(u,N) independent of r ∈ (0, 1). Consequently there is a subset Q̂r ⊂ Q0

with measure Lm(Q̂r) > 0, such that choosing any yr ∈ Q̂r, and denoting Fr := F yrr and Zr := Zyrr =
Fr + rQ, we have

MuHm−2((J ∪ ∂Ω) ∩ ∂Zyr ) +

∑
h`≤rHm−1

(
(J∪∂Ω)∩(Zr+B(0,2h`))\Zr

)∑
h`≤r h`

≤ C33, and (6.18)

lim inf
k→∞

(
MuHm−2((J̃kr ∪ ∂Ω) ∩ ∂Zyr ) +

∑
h`≤rHm−1

(
(J̃k

r ∪∂Ω)∩(Zr+B(0,2h`))\Zr

)∑
h`≤r h`

)
≤ C33. (6.19)

Let now αr ∈ [−Mu,Mu]K be such that

Hm−1({x ∈ ∂Zr | w(x) = αr}) = 0 for all w = u, v
(+)
i,r , v

(−)
i,r , i = 1, . . . , N.

(The existence of αr is a consequence of the formula
∫

Ω f dµ =
∫M

0 µ({f > t}) dt =
∫M

0 µ({f ≥ t}) dt
for bounded Borel f : Ω→ [0,M ]. Here Ω = ∂Zr, µ = Hm−1.)

We are then finally in the position to define the approximations

wkr (x) :=


αr, x ∈ Zr ∩ Ω,

v
(±)
i,r (x), x ∈ Uk,±i,r \ Zr,
u(x), otherwise in Ω.

We want to show that wkr ∈ A(Ω), and that {wkr}∞k=0 converge in a suitable sense to

vr(x) :=

{
αr, x ∈ Zr ∩ Ω,

u(x), otherwise in Ω.

Then showing that vr converges to u as r ↘ 0, a diagonal sequence {ui = wkiri }
∞
i=0, (ri ↘ 0, ki →∞),

will satisfy the claim of the lemma.
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Regarding the claim that wkr ∈ A(Ω;RK), clearly wkr ∈W 1,∞(Ω \ Jkr ;RK) for the polyhedral set

Jkr := (J̃kr \ Zr) ∪ (∂Zr ∩ Ω).

Observe also that Jwk
r
\Zr = Jkr ∩Ai,r\Zr, so that, thanks to (6.15), we have Hm−1((Jkr \Jwk

r
)\Zr) = 0.

Due to the choice of αr, also Hm−1((Jkr \ Jwk
r
) ∩ Zr) = 0. Together these yield

Hm−1(Jkr \ Jwk
r
) = 0. (6.20)

This takes care of condition (i) of Definition (5.1). Condition (iv) will be shown during the course of
the convergence proof in Step 3. The remaining conditions follow from the construction above; to force
condition (iii), we have to break each face of ∂Zr into multiple graphs by {Γki,r}Ni=1. Since the graphs

Γki,r are piecewise affine, condition (v) is retained.

Step 2: Convergence of vr to u We have to show the convergences (6.1)–(6.6) for ui = vri , (ri ↘ 0).
First of all, we observe that vr has its jump set Jvr concentrated on

Jr := (J \ Zr) ∪ (∂Zr ∩ Ω).

By construction we have Jvr \Zr = Ju \Zr and Jr \Zr = J \Zr. Thus by Definition 5.1(i), Hm−1((Jr \
Jvr) \ Zr) = 0. Due to the choice of αr we thus further obtain

Hm−1(Jr \ Jvr) = 0. (6.21)

Next we recall from Lemma 5.2 that there are at most Kr ≤ C19r
2−m points of ryr + rZm in Fr for

some constant C19 = C19(J). Thus we deduce

Lm(Zr) ≤ KrLm(rQ) ≤ C19r
2. (6.22)

Since vr = u on Ω \ Zr, this clears the convergences vr → u strongly in L2(Ω;RK), and ∇vr → ∇u
strongly in L2(Ω;RK×m) as r ↘ 0. The convergence

Hm−1(Jvr)→ Hm−1(Ju)

follows from the following two observations. Firstly Hm−1(Ju \ Jvr) = Hm−1(Ju ∩ intZr) by construc-
tion. But Hm−1(Ju ∩ intZr)→ 0 as r ↘ 0 by (6.22) and the (obvious) upper Ahlfors regularity of Ju.
Secondly, Hm−1(Jvr \ Ju) ≤ Hm−1(∂Zr)→ 0 due to the estimate

Hm−1(∂Zr) ≤ KrHm−1(∂(rQ)) ≤ C19r
2−m · 2mrm−1 = C34r. (6.23)

Since vr = u on Ω \ Zr, and u ∈ L∞Mu
(Ω;RK), we have |Tψvr − Tψu| ≤ cψHm−1x∂Zr, where cψ

is the maximum of ψ on the compact set cl Ω × clB(0,Mu) × clB(0,Mu) × Sm−1. Minding (6.23),
it follows that Tψvr

∗⇀ Tψu weakly* in M(Rm), (ψ ∈ F), and, similarly, Djvr
∗⇀ Dju weakly* in

M(Rm;RK×m).

We still have to show η(Tψvr)→ η(Tψu) for any ψ ∈ F . We begin by studying η`(Tψvr) for indices
` with h` > r. Firstly, we observe that

|Tψvr|x(J \ Zr) = |Tψu|x(J \ Zr) and |Tψvr|xZr ≤ cψHm−1x∂Zr.

Thus an application of (6.23) and Lemma 3.1(i) yields the estimate

η`(Tψvr) ≤ η`(TψvrxJ \ Zr) + 2|TψvrxZr|(Ω) ≤ η`(Tψu) + 2cψC34r,
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and summing over h` > r gives∑
h`>r

η`(Tψvr) ≤
∑
h`>r

η`(Tψu) + 2cψC34

∑
h`>r

r. (6.24)

We then study η`(Tψvr) for indices ` with h` ≤ r. Letting D(x;µ) := |µ|(τxf`)− |µ(τxf`)|, we may
write

η`(Tψvr) =

∫
Rm

D(x;Tψvr) dx =

∫
A
D(x;Tψvr) dx+

∫
B
D(x;Tψvr) dx, (6.25)

for A := Zr +B(0, h`) and B := Rm \A. The second integral we may approximate∫
B
D(x;Tψvr) dx =

∫
B
D(x;Tψu) dx ≤

∫
Rm

D(x;Tψu) dx = η`(Tψu). (6.26)

We then consider the integral over A = Zr +B(0, h`). First of all, since supp f` ⊂ B(0, h`), we deduce
that ∫

A
D(x;Tψvr) dx ≤ η`(Tψvrx(Zr +B(0, 2h`))). (6.27)

We intend to use Proposition 3.3, towards which end we need to estimate Sp(Tψvrx(Zr + B(0, 2h`)).
Observing that

|Tψvr|x(Zr +B(0, 2h`)) ≤ cψ(Hm−1x∂Zr +Hm−1xJ ∩ (Zr +B(0, 2h`)) \ Zr), (6.28)

it suffices to study
µr,` := Hm−1x∂Zr +Hm−1xJ ∩ (Zr +B(0, 2h`)) \ Zr.

By Lemma 5.6 we indeed have the bound

Sp`(µr,`;Gr,`) ≤ Hm−1
(
J ∩ (Zr +B(0, 2h`)) \ Zr

)
+ C28h` (6.29)

for C28 = C28(J) and the collection

Gr,` := {Γx` := ∂Zr ∩B(x, h`) | B(x, h`) intersects at most one face of Zr} (6.30)

of Lipschitz graphs satisfying (3.13). An application of (6.18) yields∑
h`≤r

Sp`(µr,`;Gr,`) ≤ C35

∑
h`≤r

h` (6.31)

for some C35 = C35(u, J,N).

Writing

θψ,r,`µr,` := ψ(·, v+
r , v

−
r , νJvr )Hm−1x

(
Jvr ∩ (Zr +B(0, 2h`))

)
= Tψvrx(Zr +B(0, 2h`)),

we now have by Proposition 3.3 for some constant C36 = C36(L,m,α) that

η`(Tψvrx(Zr +B(0, 2h`)) ≤ C36h`‖θψ,r,`‖BV(Gr,`) + Sp`(θψ,r,`µr,`;Gr,`)

≤ C36h`

(
sup
{Γ}

∑
Γ

‖θψ,r,` ◦ gΓ‖BV(VΓ)

)
+ cψSp`(µr,`;Gr,`).

(6.32)

The supremum is taken over finite disjoint subcollections of Gr,`. Recalling (6.30), this amounts to
simply taking the sum over all the faces (see Definition 5.3) of Zr. Let us denote this collection by
Vr. Extending u and v by zero outside Ω, for them to be fully defined on all Γ ∈ Vr, we then have to
bound ∑

Γ∈Vr

‖θψ,r,` ◦ gΓ‖BV(VΓ) =
∑
Γ∈Vr

‖ψ(·, v+
r ◦ gΓ, v

−
r ◦ gΓ, νΓ ◦ gΓ)‖BV(VΓ).
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Since ψ is C1, it is Lipschitz on the compact set cl Ω× clB(0,Mu)× clB(0,Mu)×Sm−1, and we may
apply the BV chain rule [3]. We thus only have to bound ‖νΓ ◦ gΓ‖BV(VΓ) and ‖v±r ◦ gΓ‖BV(VΓ) for
Γ ∈ Vr. Since each Γ ∈ Vr is a face of ∂Zr, we find that νΓ is constant with∑

Γ∈Vr

‖νΓ ◦ gΓ‖BV(VΓ) =
∑
Γ∈Vr

Hm−1(gΓ(VΓ)) = Hm−1(∂Zr).

This is indeed bounded due to (6.23). On the other hand, the definition vr = (1−χZr)u+αrχZr gives∑
Γ∈Vr

‖v+
r ◦ gΓ‖BV(VΓ) +

∑
Γ∈Vr

‖v−r ◦ gΓ‖BV(VΓ) ≤ 2MuHm−1(∂Zr) +
∑
Γ∈Vr

‖u ◦ gΓ‖BV(VΓ).

Since u ∈W 1,∞(Ω \ J) and Lipschitz continuity is preserved by traces on affine sets, we may bound

‖u ◦ gΓ‖BV(VΓ) ≤
∫

Γ∩Ω
‖u(x)‖+ ‖∇u(x)‖ dHm−1(x) + 2MuHm−2((J ∪ ∂Ω) ∩ Γ).

The latter term approximates the mass of the jump part of the differential. Summing over Γ ∈ Vr we
thus obtain∑

Γ∈Vr

‖u ◦ gΓ‖BV(VΓ) ≤
∫
∂Zr∩Ω

‖u(x)‖+ ‖∇u(x)‖ dHm−1(x) + 2MuHm−2((J ∪ ∂Ω) ∩ ∂Zr)

≤ ‖u‖W 1,∞(Ω;RK)Hm−1(∂Zr ∩ Ω) + 2MuHm−2((J ∪ ∂Ω) ∩ ∂Zr)
≤ ‖u‖W 1,∞(Ω;RK)C34r + 2C33, (r ∈ (0, 1)).

(6.33)

In the final step we have applied (6.23) and (6.18). Applying this in (6.32), it now follows for some
C37 = C37(u,N,L,m, α,Ω) that

η`(Tψvrx(Zr +B(0, 2h`)) ≤ C37h` + cψSp`(µr,`;Gr,`). (6.34)

Applying (6.31), we may now deduce from (6.34) for some C38 = C38(u, J,N,L,m, α,Ω) that∑
h`≤r

η`(Tψvrx(Zr +B(0, 2h`)) ≤ C38

∑
h`≤r

h`.

Recalling (6.25)– (6.27) it then follows that∑
h`≤r

η`(Tψvr) ≤
∑
h`≤r

η`(Tψu) + C38

∑
h`≤r

h`, (h` ≤ r). (6.35)

The estimate (6.24) for the cases h` > r together with (6.35) now yields

η(Tψvr) ≤ η(Tψu) + C39

∞∑
`=0

min{h`, r}, (ψ ∈ F),

for some C39 = C39(u, J,N,L,m, α,Ω,F). Recalling the condition (3.1) in the Definition 3.1 of a
regular nested sequence of functions, the sum tends to zero as r ↘ 0. Since Tψvr

∗⇀ Tψu and η is known
from Theorem 3.1 to be lower-semicontinuous with respect to weak* convergence, this gives η(Tψvr)→
η(Tψu). The proof of properties and convergence of the preliminary approximations {vr}r∈(0,1) can thus
be concluded.
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Step 3: Convergence of wkr to vr We now need to show that {wkr}∞k=0 approximate vr sufficiently
close to the senses (6.1)–(6.6), in that a converging diagonal sequence can be constructed.

We begin by observing that (6.11) and the construction of the functions wkr and vr yield

‖wkr − vr‖2L2(Ω;RK) =

∫
Ω
χJ+B(0,skr )‖wkr (x)− vr(x)‖2 dx,

where Lm(J +B(0, skr ))→ 0 as k →∞. Minding that

‖wkr‖L2(Ω;RK) ≤ ‖u‖L2(Ω;RK) +

N∑
i=1

(
‖v(+)
i,r ‖L2(Ui,r;RK) + ‖v(−)

i,r ‖L2(Ui,r;RK)

)
is bounded, it therefore follows that wkr → vr strongly in L2(Ω;RK). Analogously we get ∇wkr → ∇vr
strongly in L2(Ω;RK×m).

Let us then fix ψ ∈ F . We now have to study in what sense η(Tψw
k
r ) approximates η(Tψvr) as

k → ∞. We begin by studying η`(Tψw
k
r ) for indices ` with h` ≤ s̄r/3 with the intent of applying

Proposition 3.3 again. Then, observing that |Tψwkr | ≤ cψλkr for

λkr := Hm−1xJkr = Hm−1x∂Zr +Hm−1x(J̃kr \ Zr),

it suffices to calculate Sp`(λ
k
r ;Gkr,`) for some collections Gkr,` of Lipschitz graphs Γx` = Γk,xr,` yet to be

determined. We may further assume that k is large enough that

(s̄r − skr ) ≥ (2/3)s̄r ≥ 2h`.

As in Step 2, we split the integral in (3.5) as

Sp`(λ
k
r ;Gkr,`) =

∫
A
|λkrxOx` \ Γx` |(τxf`) dx+

∫
B
|λkrxOx` \ Γx` |(τxf`) dx, (6.36)

for A := Zr + B(0, h`) and B := Rm \ A. If x ∈ B, then from (6.13) and (s̄r − skr ) ≥ 2h`, we observe
that the ball B(x, h`) intersects at most one of the graphs Λk1,r, . . . ,Λ

k
N,r. If B(x, h`) intersects, say,

Λki,r, we then take

Γx` =
(
B(x, h`) + RzΛk

i,r

)
∩ Λki,r.

Otherwise, if Jkr ∩B(x, h`) = ∅, we take Γx` = ∅. In either case, we have Jkr ∩Ox` \ Γx` = ∅, so∫
B
|λkrxOx` \ Γx` |(τxf`) dx = 0. (6.37)

We define the collections G̃kr,` := {Γx` | x ∈ B}, (2h` ≤ (̄2/3)sr ≤ (s̄r−skr )). Each Γ ∈ G̃kr,` is a Lipschitz
graph of constant at most L′(r) and satisfies (3.13).

With regard to A = Zr +B(0, h`), an application of Lemma 3.1(ii) gives∫
A
|λkrxOx` \ Γx` |(τxf`) dx ≤

∫
|λkrx(Zr +B(0, 2h`)) \ Γx` |(τxf`) dx

= Sp`(λ
k
rx(Zr +B(0, 2h`));Gkr,`).

(6.38)

Lemma 5.6 this time gives

Sp`(λ
k
rx(Zr +B(0, 2h`));Gr,`) ≤ Hm−1

(
J̃kr ∩ (Zr +B(0, 2h`)) \ Zr

)
+ C28h`
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for exactly the same collections Gr,`, (` = 0, 1, 2, . . .), as in Step 2. Setting Gkr,` := Gr,` ∪ G̃kr,` and
recalling (6.36)–(6.38), it thus follows that

Sp`(λ
k
r ;Gkr,`) ≤ Hm−1

(
J̃kr ∩ (Zr +B(0, 2h`)) \ Zr

)
+ C28h`.

By application of (6.19), we therefore obtain for some C35 = C35(u, J,N) that

lim inf
k→∞

∑
h`≤s̄r/3

Sp`(λ
k
r ;Gkr,`) ≤ C35

∑
h`≤r

h`. (6.39)

It is now possible to apply Proposition 3.3 on

Tψw
k
r = ϑkψ,rλ

k
r := ψ(·, (wkr )+, (wkr )−, νJ

wk
r
)χJ

wk
r
λkr .

This yields for some C40 = C40(L′,m, α) the estimate

η`(Tψw
k
r ) ≤ C40h`‖ϑkψ,r‖BV(Gkr,`)

+ Sp`(ϑ
k
ψ,rλ

k
r ;Gkr,`)

≤ C40h`

(
sup
{Γ}

∑
Γ

‖ϑkψ,r ◦ gΓ‖BV(VΓ)

)
+ cψSp`(λ

k
r ;Gkr,`).

(6.40)

The supremum is taken over finite disjoint subcollections of Gkr,`. Minding the construction of Gkr,`, this

amounts to simply taking all the faces Γ ∈ Vr of Zr along with Λki,r for i = 1, . . . , N . With r fixed, we

thus have to bound
∑

Γ∈Vr∪{Λk
i,r}Ni=1

‖ϑkψ,r ◦ gΓ‖BV(VΓ). With the additional help of (6.14) and (6.19)

for estimates within Uk,±i,r (where wkr = vi,r), we can similarly to (6.33) in Step 2, bound∑
Γ∈Vr

‖ϑkψ,r ◦ gΓ‖BV(VΓ) ≤ C41 = C41(u, J,N)

As for the remaining sum over the surfaces Λki,r, (i = 1, . . . , N), we have∑
Γ=Λk

1,r,...,Λ
k
N,r

‖ϑkψ,r ◦ gΓ‖BV(VΓ) =
∑

Γ=Λk
1,r,...,Λ

k
N,r

‖ψ(·, (wkr )+ ◦ gΓ, (w
k
r )− ◦ gΓ, νJ

wk
r
◦ gΓ)‖BV(VΓ),

since ψ is C1 on the compact set cl Ω× clB(0,Mu)× clB(0,Mu)×Sm−1, we may again apply the BV
chain rule and only have to bound ‖νJ

wk
r
◦gΓ‖BV(VΓ) and ‖(wkr )±◦gΓ‖BV(VΓ) for Γ = Λki,r, (i = 1, . . . , N ;

k = 0, 1, 2, . . .). Such bounds are given by the estimates (6.12) and (6.16). Thus∑
Γ

‖ϑkψ,r ◦ gΓ‖BV(VΓ) ≤ C42 = C42(u,m, J).

We now obtain from (6.40) for some C43 = C43(L′,m, α,Ω, ψ, J) the estimate

η`(Tψw
k
r ) ≤ C43h` + cψSp`(λ

k
r ;Gkr,`).

Summing over h` ≤ s̄r/3 and recalling (6.39) and the finiteness of F yields

lim inf
k→∞

∑
ψ∈F

( ∑
h`≤s̄r/3

η`(Tψw
k
r )

)
≤ C44

∑
h`≤r

h` (6.41)

for some C44 = C44(u, J,N,L′,m, α,Ω,F). For h` > s̄r/3, we have the rough bound

η`(Tψw
k
r ) ≤ |Tψwkr |(Ω) ≤ cψHm−1(Jwk

r
), (ψ ∈ F).
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It follows that
lim inf
k→∞

∑
ψ∈F

η(Tψw
k
r ) ≤ C45(r) = C45(u, J,N,L′,m, α, r,Ω,F),

so, after passing to an unrelabelled subsequence, we have for any fixed r ∈ (0, 1) that

sup
k
η(Tψw

k
r ) <∞, (ψ ∈ F). (6.42)

Next we intend to apply Lemma 4.3 to show the weak* convergence of {Tψwkr}∞k=0 to Tψvr. We
begin by deducing from (6.18) that Hm−1(J ∩ ∂Zr) = 0. Thus Proposition 2.1 and (6.9) give

Hm−1xJkr \ Zr ∗⇀ Hm−1xJr \ Zr weakly* in M(Rm).

As ∂Zr ∩ Jr = ∂Zr ∩ Jkr = ∂Zr, (k = 0, 1, 2, . . .), it follows that

Hm−1xJkr
∗⇀ Hm−1xJr weakly* in M(Rm).

Recalling (6.20), (6.21), we thus have

Hm−1xJwk
r

∗⇀ Hm−1xJvr weakly* in M(Rm).

By the convergence of {wkr}∞k=0 to vr in H2(Ω), shown in the beginning of the present step, the trace
of wkr on ∂Zr converges to that of vr in L1. Therefore (6.10) and (6.17) yield analogously to the above
that

νJ
wk
r
Hm−1xJwk

r

∗⇀ νJvrH
m−1xJvr weakly* in M(Rm;Sm−1), and (6.43)

(wkr )±Hm−1xJwk
r

∗⇀ v±r Hm−1xJvr weakly* in M(Rm;RK). (6.44)

We may assume that F includes the functions

ψνi : (x, u+, u−, ν) 7→ νi (for Lemma 4.3),

ψ±i : (x, u+, u−, ν) 7→ (u±)i (for Lemma 4.3),

ψi,n : (x, u+, u−, ν) 7→ [(u+ − u−)iνn], and

ψH : (x, u+, u−, ν) 7→ ‖ν‖ ≡ 1, (i, n = 1, . . . ,m).

It now follows from (6.42)–(6.44), and Lemma 4.3, after possibly passing to a subsequence, unrelabelled,
that both Tψw

k
r
∗⇀ Tψvr and |Tψwkr | ∗⇀ |Tψvr| in M(Rm) for all ψ ∈ F . By the inclusion of ψi,n in F ,

(i, n = 1, . . . ,m), it follows that Djwkr
∗⇀ Djvr as well as |Djwkr |(Ω) → |Djvr|(Ω). Moreover, by the

inclusion of ψH in F , we get Hm−1(Jwk
r
)→ Hm−1(Jv).

We must still study the convergence of η(Tψw
k
r ) to η(Tψvr). As we have shown above that Tψw

k
r
∗⇀

Tψvr, and |Tψwkr | ∗⇀ |Tψvr| in M(Rm) it follows from Theorem 3.1 that η`(Tψw
k
r ) → η`(Tψvr), (` =

0, 1, 2, . . .). By the lower-semicontinuity of η and, respectively, (6.41), it follows that by choosing k(r)
large enough, we can ascertain the lower and upper bounds

η(Tψvr)− 2C44

∑
h`≤r

h` ≤ η(Tψw
k(r)
r ) ≤ η(Tψvr) + 2C44

∑
h`≤r

h`, (ψ ∈ F). (6.45)

The sum
∑

h`≤r h` tends to zero as r ↘ 0, so η(Tψw
k(r)
r )− η(Tψvr)→ 0 as r ↘ 0.

Summarising, taking k(r) sufficiently large, we can thus ask that (6.45) holds as do

Hm−1(Jvr)− r ≤ Hm−1(J
w

k(r)
r

) ≤ Hm−1(Jvr) + r
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along with
‖vr − wk(r)

r ‖L2(Ω;RK) ≤ r, and ‖∇vr −∇wk(r)
r ‖L2(Ω;RK×m) ≤ r.

Metricising the weak topology on M(Rm) with d∗, we can also ensure that

d∗(Djvr, D
jwk(r)

r ) ≤ r, and d∗(Tψvr, Tψw
k(r)
r ) ≤ r, (ψ ∈ F).

Minding the preliminary approximation results of Step 2, we thus obtain the desired convergences

(6.1)–(6.6) for the sequence ui := w
k(ri)
ri given ri ↘ 0. This completes the proof.

Remark 6.1. Provided that Sp(J ∪∂Ω) is bounded, it is easy to extend the above proof to show that
if ū (resp. ūi) is the extension of u (resp. ui) to Rm by zero, then the sequence {ūi}∞i=0 converges to ū
in the senses (6.1)–(6.6) with Ω = Rm. (The important point is that parts of ∂Ω now are contained
in Ju.) Indeed, all we have to do is to include the graphs ΓΩ

1 , . . . ,Γ
Ω
M , where ∂Ω =

⋃M
i=1 ΓΩ

i , among
Λ1, . . . ,ΛN in the construction of the theorem. We however do not need to cover the boundaries by
jump cubes or to approximate them by polyhedral graphs as we do approximate Λ1, . . . ,ΛN . Hence
there is also no need to extend u over ΓΩ

1 , . . . ,Γ
Ω
M (as v±i,r). The only thing that we need to take worry

about is the effect of the jump cubes on Sp. This is the reason why we have already included ∂Ω in
the Hm−1 bounds of (6.18) and (6.19); doing so was not necessary for the proof above. (Including ∂Ω
in the Hm−2 bounds is however necessary for bounding quantities of the form ‖θ‖BV(G`) with Γx` ∈ G`
extending outside Ω.)

7. An anisotropic variant

We next study a variant of Theorem 6.1 approximating J by jump sets with the normal field al-
ways oriented along one of the the coordinate axes. We begin with necessary additional definitions,
assumptions, and lemmas.

Definition 7.1. For ν ∈ Sm−1, we define the anisotropy function ϕ(ν) :=
∑m

i=1 |〈ν, ei〉| = ‖ν‖1. For
Hm−1-rectifiable J , we let Φ(J) :=

∫
J ϕ(νJ) dHm−1.

The following lemma is an analogue of Lemma 4.3.

Lemma 7.1. Let F be a finite collection of maps ψ(x, u+, u−, ν) = ψ̄(x, u+, u−)ϕ(ν) for some ψ̄ ∈
C1(cl Ω × RK × RK). Suppose that F includes the functions ψϕ : (x, u+, u−, ν) 7→ ϕ(ν), and ψ±ϕ,i :

(x, u+, u−, ν) 7→ u±i ϕ(ν), (i = 1, . . . ,K). Let {v, w0, w1, w2, . . .} ⊂ SBV(Ω;RK) ∩ L∞M (Ω;RK) satisfy

sup
k
Hm−1(Jwk) <∞, (7.1)

sup
k
η(Tψw

k) <∞, (ψ ∈ F), (7.2)

ϕ(νJ
wk

)Hm−1xJwk
∗⇀ ϕ(νJv)Hm−1xJv weakly* in M(Ω), and (7.3)

(wk)±ϕ(νJ
wk

)Hm−1xJwk
∗⇀ v±ϕ(νJv)Hm−1xJv weakly* in M(Ω;RK). (7.4)

Then, after possibly moving to an unrelabelled subsequence, we have Tψw
k ∗⇀ Tψv and |Tψwk| ∗⇀ |Tψv|

for all ψ ∈ F .

Proof. The claim follows similarly to Lemma 4.3; for the application of Reshetnyak’s continuity theo-
rem, we simply write for µw := (w+, w−, 1)ϕ(ν)xJw that

f(x)ψ(x,w+, w−, ν)Hm−1xJw = f(x)ψ̄(x,w+, w−)ϕ(ν)Hm−1xJw

= f(x)ψ̄(x,w+, w−)
1

‖(w+, w−, 1)‖
|µw|

=: ψf

(
x,

dµw
d|µw|

)
|µw|.
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Remark 7.1. The lemma would also go through for ψ(x, u+, u−, ν) =
∑m

i=1 ψ̄i(x, (u
+, u−))ϕi(ν) with

ϕi(ν) = |〈ν, ei〉|, provided the weak* convergence of ((wk)+, (wk)−, 1)ϕi(νJ
wk

) to (u+, u−, 1)ϕi(νJu),
(i = 1, . . . ,m), which actually does hold in the construction below. The reason for restricting attention
to ψ(x, u+, u−, ν) = ψ̄i(x, u

+, u−)ϕ(ν) is the bound (7.6) below: ϕi ◦ νΛk ◦ gΛk would have to have
uniformly bounded variation for a sequence of approximations {Λk}∞k=0. This does not generally hold
with Λk on the faces of a tightening grid.

Theorem 7.1. Let Ω = intQ ⊂ Rm. Suppose u ∈ A(Ω;RK). Let F be a finite collection of maps
ψ(x, u+, u−, ν) = ψ̄(x, u+, u−)ϕ(ν) for some ψ̄ ∈ C1(cl Ω × RK × RK). Then there exists a sequence
{ui}∞i=0 ⊂ A(Ω;RK) such that each set Ĵui from Definition 5.1 satisfies ν

Ĵui
(x) ∈ {±e1, . . . ,±em},

(a.e. x ∈ Ĵui), and we have the convergences (6.1)–(6.3),(6.6) and

Φ(Jui)→ Φ(Ju). (7.5)

Sketch of proof. Let {Λi}Ni=1 be the graphs from Definition 5.1 for u. By including in F the function

ψΦ : (x, u+, u−, ν) 7→ ϕ(ν),

Theorem 6.1 yields the convergence Φ(Jui) → Φ(Ju) for the sequence of approximations constructed
therein. Consequently, minding the construction in Theorem 6.1, we may without loss of generality
assume that each of the graphs Λi, (i = 1, . . . , N) is affine.

Next we apply Theorem 6.1 a second time with a small modification. By the assumption that Λi, (i =
1, . . . , N), are affine, it is easy to construct approximating graphs Λki,r such that νΛk

i,r
∈ {e1, . . . , em}.

As clearly νZr ∈ {e1, . . . , em}, it follows that ν
Ĵ
wk
r

∈ {e1, . . . , em}.

The only problem with this kind of approximation is that we do not have the estimate (6.12),
{∇gΛk

i,r
}∞k=0 not generally being bounded in the BV norm. However, since ψ ∈ F only depends on ν

through ϕ(ν), we do not need to bound ‖νΛk
i,r
◦ gΛk

i,r
‖BV(V

Λk
i,r

;Rm), instead needing only

‖ϕ ◦ νΛk
i,r
◦ gΛk

i,r
‖BV(V

Λk
i,r

) ≤ C46. (7.6)

But this is trivial, because ϕ ◦ νΛk
i,r
≡ 1.
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