Strong polyhedral approximation of simple jump sets
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Abstract

We prove a strong approximation result for functions u € W>°(Q\ J), where J is the union of finitely
many Lipschitz graphs satisfying some further technical assumptions. We approximate J by a polyhedral
set in such a manner that a regularisation term n(Div’ u?), (i = 0,1,2,...), is convergent. The bounded-
ness of this regularisation functional itself, introduced in [T. Valkonen: “Transport equation and image
interpolation with SBD velocity fields”, (2011)] ensures the convergence in total variation of the jump
part Div’ «! of the distributional divergence.
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1. Introduction

Let u € SBV(£2) be a special function of bounded variation on the domain 2 C R™. We would like
to approximate u by a sequence of functions {ui}fio such that u’ is reasonably smooth in Q \ jui,
(1=0,1,2,...), and juz is a polyhedral (m — 1)-dimensional set, containing the jump set J,;. As the
novelty of our results, we would like convergence from a regularisation term n(Div’ «?), introduced
n [I1]. The boundedness of this term ensures that if Div/u’ = Div/u and |Div’u!| = X, then
A = | Div/ u|. The notation Div’u here stands for the “jump part” of the distributional divergence
Div u, while the absolutely continuous part will be denoted by div u.

Why do we want this kind of strong approximation property? In [I1] we studied an extension of the
transport equation involving “jump sources and sinks”. With u = (1,b) the velocity field and I the
space-time data being transported, it can be stated as

Div(Iu) — Idivu — 7 Div’i u = 0 (1.1)

for some 7 defined on the jump set of u, modelling the sources and sinks. To show the stability of
with {I'}2°, converging weakly in BV(Q) and {u’}32, converging as in the SBV/SBD compactness
theorems [3, 4], we needed to further assume that | Div’ «’[(Q) — |Div/u|(R2). To use as a
constraint in an optimisation problem (specifically, image interpolation), we thus had to introduce the
regularisation term 7n(Div’ u’) ensuring this convergence. One possibility for the definition is

o =3 (Il 2 [

e+ 0,279™) dw) L (e M©). (1.2)
=0 Rm

Roughly 7() < oo says that on average the differences 27 (|| (x4 [0,274™) — |u(x 4 [0,274™)]) go
to zero as the scale 27¢ becomes smaller. Thus on small sets || is close to .
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The problem then becomes: can we, at least in principle, numerically solve problems involving such
regularisation terms? That is, can we in particular construct a sequence of discretisations of u such
that n(Div’ u’) — 7(Div’/ u) along with the standard convergences u’ — u and Vu! — Vu in L2,
Diut — DJu weakly*, and H™ 1(J,:) — H™ 1(J,)? In the present work, we intend to provide a
partial answer. Specifically, we restrict our attention to functions u € W1H°(Q \ ju), where J,, is the
union of finitely many Lipschitz graphs with bounded variation gradient mapping, satisfying further
technical conditions, given in Definition below. Assuming these conditions, we show that w can
be approximated by functions u! € W1°(Q\ J,;) with J,; polyhedral and satisfying Definition
Some of our proof techniques resemble those of the SBD approximation theorem of Chambolle [6, [7].
In SBV a counterpart approximation theorem is proved by quite different techniques by Cortesani
and Toader [§]. Their result provides largely similar convergence properties as ours, but is missing the
crucial convergence of n(Div? u?). Of course, the class of functions that we are able to study at the
moment is significantly smaller. Finally, we also study anisotropic approximation with J,: restricted
to lie on translations of the coordinate planes.

We have organised this paper as follows. First, in Section [2, we introduce notation and some other
well-known tools. In section [3] we study the functional 7, and estimates for bounding it. As a conse-
quence we also obtain some new SBV compactness results. In Section [4] we provide a series of further
technical lemmas of general nature, needed to prove the approximation theorem. In the subsequent
Section [5| we then introduce in detail the space where the approximated function w lies in, and pro-
vide further technical lemmas regarding the covering of the boundary of the jump set by cubes. Our
main approximation theorem is then stated and proved in Section [6} Finally, we study anisotropic
approximation in Section [7]

2. Preliminaries
2.1. Sets and functions

We denote the unit sphere in R™ by S™~!, while the open ball of radius p centred at x € R™ we
denote by B(z, p). The boundary of a set A is denoted 0A, and the closure by cl A.

For v € R™, the hyperplane orthogonal to v we denote by v+ := {z € R™ | (v, 2) = 0}. P, denotes
the projection onto the subspace spanned by v, and P;- the projection onto v=+.

We denote by {ei,...,en} the standard basis of R™.

The k-dimensional Jacobian of a linear map L : R¥ — R™, (k < m), is defined as Ji[L] :=
\/det(L* o L).

A set ' C R™ is a called a Lipschitz d-graph (of Lipschitz factor L), if there exist a unit vector zr,
an open set Vr on a d-dimensional subspace of Z%, and a Lipschitz map gr : Vi — R™ of Lipschitz
factor at most L, such that

I'={yeR"|gr(v)=y,v=Pryer}

We say that I' is polyhedral if gr is piecewise affine and Vr is a polyhedral set, i.e., consists of finitely
many simplices. If gr is further affine, we say that I" is affine. We define the boundary as OT" := gp(0Vr).

Remark 2.1. Consider the situation d = m — 1. If T is the graph of f : U ¢ R™! — R, then
gr(v) = (=, f(x)) for v = (2,0) € Vp = U x {0}. More generally, if Vi C z{ for some 2zr € R™, and
f : Vr — R is Lipschitz map, then gr(v) = v + zp f(v) defines a Lipschitz graph. Conversely, if T" is a
Lipschitz graph per the above definition, then defining fr(v) := (gr(v), 2r) for v € Vi, we obtain the
more conventional description

I' = {U -+ fF(U)ZF ‘ v E VF}.

For our purposes it is more convenient to work with the map gr, however.



2.2. Measures

The space of (signed) Radon measures on an open set € is denoted M(Q). If V' is a vector space,
then the space of V-valued Radon measures on {2 is denoted M (; V). The k-dimensional Hausdorff
measure, on any given ambient space R™, (k < m), is denoted by H*, while £™ denotes the Lebesgue
measure on R". For a measure u and a measurable set A, we denote by uLA the restriction measure
defined by (uLA)(B) := u(A N B). The total variation measure of u is denoted |u|. For a Borel map
u: Q — R we denote pu(u) := [, udpu.

A measure p € M(R) is said to be Ahlfors-regular (in dimension d), if there exists M € (0, 00) such
that
MY <|u|(B(z,r)) < Mr? forall r>0and z € supp u.

If only the first or the second inequality holds, then p is said to be, respectively, lower or upper
Ahlfors-regular.

We will often refer to the following standard result on weak* convergence. (See, e.g., [2, Proposition
1.62]).

Proposition 2.1. Let pt € M(Q), (i = 0,1,2,...), be such that u* = p € M(Q), and |pi| = X €
M(Q). If E is a relatively compact pi-measurable set such that N\(OE) = 0, then pu*(E) — u(E). More
generally, let u : Q@ — R be any compactly supported Borel function, and denote by Ey the set of its
discontinuity points. Then, if \(Ef) = 0, we have [qudu’ — [oudp.

2.3. Functions of bounded variation

A function u : Q — RX on a bounded open set 2 C R™, is said to be of bounded variation (see, e.g., [3]
for a more thorough introduction), denoted u € BV (Q; R¥), if v € L}(Q;RX), and the distributional
gradient Du is a Radon measure. We define the norm ||ullgyqrx) == [[ull g1 @rx) + [Dul(€2).

Given a sequence {u'}3°, C BV(Q;RX), strong convergence to u € BV(£2; RX) is defined as strong
L' convergence ||u’ — ul| 1 rxy — 0 together with convergence of the total variation |u —u'|(€2) — 0.

Weak convergence is defined as u’ — wu strongly in L'(€;RX) along with Du’ = Du weakly™ in
M(Q; REXxm),

We denote by S, the approximate discontinuity set, i.e., the complement of the set where the
Lebesgue limit u exists. The latter is, of course, defined by

1 _ B
lim — /B )~ utldy =o.

The distributional gradient can be decomposed as Du = Vul™ + Diu + D, where the density
Vu of the absolutely continuous part of Du equals (a.e.) the approximate differential of u. The jump
part D7y may be represented as

Diu=(u" —u)@u,H™ 1T, (2.1)

where x is in the jump set J, C S, of u if for some v := v, (x) there exist two distinct one-sided
traces u*(z) defined as satisfying

1
lim/ uF(z) — u(y)||dy = 0, 2.2
e L @ )l 2:2)



where BT (x,p,v) := {y € B(z,p) | £(y — z,v) > 0}. It turns out that .J, is countably H™ !-
rectifiable, and v is (a.e.) the normal to J,,. Moreover, H™~1(S, \ J,) = 0. The remaining Cantor part
D¢y vanishes on any Borel set o-finite with respect to H™ 1.

The space SBV(Q; R¥) of special functions of bounded variation is defined as those u € BV (Q; R¥)
with D = 0. There we have the following compactness result.

Theorem 2.1 (SBV compactness [I]). Let Q C R™ be open and bounded. Suppose 1 : [0, 00) — [0, 00)
is non-decreasing with lim;_,o. 1(t) /t = co. Suppose {u'}2, C SBV(Q; RE) with

sup([ulls + [ $(I7wl)da + D7)+ H" 1 (7)) < oo

Then there exists u € SBV(;RE) and a subsequence of {u'}22,, unrelabelled, such that

ul — u strongly in L' (Q; RE),
Vul — Vu weakly in LY(€; RE*™),
Diut = DIy weakly* in M(; RE*™), and
H™ (T, < liirgiogf?-{m_l(,] 0.

u

We will also be working with functions that are of bounded variation on a subspace. That is, let z €
Sm=1 and V C z* be open and bounded. We then denote u € BV(V;RX) if uo R, € BV(R;'V;RF),
where R, € R™*(m=1) ig an orthonormal basis matrix for z+. We let

”UHBV(V;RK) = fluo RzHBv(Rglv;RK)’
We define the Sobolev spaces WP (V;RE) (n >0, 1 < p < 00), analogously.

We are also interested in the case when u has not just scalar or simple vector values, but u =
Vg € LY(V;RE x z1). Then the definition becomes that u € BV(V;RX x z1) if [z — u(R.(x))R.] €
BV (R;'V; REX(m=1)) with

HUHBV(V;RKXZL) =z U(RZ(x))RZHBV ROV REX(m—1))-
(Rz7V; )

2.4. Poincaré-type inequalities

We will later need some Poincaré-type inequalities, which we study now. The following proposition
can be found in, e.g., [I2, Theorem 5.12.7].

Proposition 2.2. Let Q C R% be a connected domain with Lipschitz boundary, and pn a positive
Radon measure on R?, that is upper Ahlfors reqular with constant M in dimension d — 1, and satisfies
supp i C clQ. Then there exists a constant Cy = C1(R2), such that for each u € BV(£2), we have

M
[l = p(u) /(D) 1) < Clm\DUI(Q)-

Corollary 2.1. Suppose Q@ = B(0,7) in Proposition . Then there exists a constant Co = Ca(d),
independent of v, such that

lu = p(u) /() 1) < 71 Cy [Dul(€),  (u € BV(Q)). (2.3)

p(cl§2)
Suppose, in particular, that p = L3 C Q with p(u) = 0 and LYQ) > prl. Then, for a constant
C3 = C3(d), we have

[ull 1 () < r?p D/ Cs| Dul(92). (2.4)



Proof. We apply Proposition on the domain B(0,1) with uj(z) := u(rz) and u1(A) = u(ra),
yielding
M,
Jur — p1(ur)/pa (B(O, 1))HL1(B(0 1)) C2W|Dul\( (0,1)).
A change of variables gives
[Duy|(B(0,1)) = [Du|(B(0, 1)),
and
lur — g (ur) /pa (BQO, D)l 11 (Bo.ayy =~ “llu — pa(w) / (B0, 7)) 21 (B0
as p11(u1) = p(u) and pq(B(0,1)) = u(B(0,r)). Observing that the upper Ahlfors constant M, for j
is at most Mrd=1, we get (2.3).

As for the second result, we just have to approximate M. Elementary manipulations give
w(B(z,s)) < minfwgs?, £L1(Q)} < Ms??
for wy the volume of the unit ball in R%, and M defined by
ML) = (wa/ £4@) T < (o7 o) D A1,

Inserting this into (2.3)) gives (2.4)). O

3. Regularisation of total variation
3.1. Convergence of total variation measures

We now study a condition ensuring the convergence of the total variation |u?|(£2) subject to the weak*
convergence of the measures u?, (i = 0,1,2,...). Improving a result first presented in [11], we show
in Theorem below that if {f,}72, is a normalised nested sequence of functions per Definition
below, then it suffices to bound

=S (), where m(ut) = [ |(2 /mmﬁm
=0

Here we employ the notation 7, f(y) := f(y — x). In the next subsection we will then study an upper
bound on 7.

Definition 3.1. Let f; : R™ — R, (£ =0,1,2,...), be bounded Borel functions with compact support
that are continuous in R™ \ Sy,. (That is, the approximate discontinuity set is the discontinuity set.)
Let also {vg}3°, € M(R™), |yg|(Rm) = 1. The sequence {(fs,v¢)}72, is then said to form a nested
sequence of functions if fy(x) = [ fir1(z — y) dve(y) (a.e.). The sequence is said to be normalised if
fe>0and [ fodx =1. The 5equence is said to be regular, if it is normalised, and there exist constants
a > 0and 8 > 0, and a sequence hy \, 0,

[e.9]
li i = 1
lim gz_% min{hy,r} =0, (3.1)

such that ah, ™ X p(0,sn,) < fo < a_thmXB(O,h[)'

Example 3.1. Examples include f = x[_1/2,1/9m in R™, and f(t) = max{0, min{1 +¢,1 —¢}} in R
(as well as similar but more complicated shape functions in R"). Regularity holds in these cases, and
in the more general typical case fy(x) := h, ™ f(z/he) for hy "\ 0 and some f > axp(o,) With compact
support and [ fdx = 1.



Theorem 3.1. Let Q C R™ be an open and bounded set, and {( fe, v¢)}72, a normalised nested sequence
of functions. Define

V= mlu), where () = el [Iurafldz, (we M@).  (32)
=0

Suppose {u'}2, C M(Q) weakly* converges to p € M(S2) with sup; |p'|(2) +n(u') < co. If also |u'| =
A, then A = |u|. Moreover, each of the functionals n and ng, (¢ =0,1,2,...), is lower-semicontinuous
with respect to the weak* convergence of {1i*}22,. Provided that the weak* convergences hold in M(R™),

then also ne(u’) — ne(p), (€ =0,1,2,...).

Proof. Let us suppose first that ' = g and |pf| = A weakly* in M(R™) rather than just M(£2). We
denote by Ef the discontinuity set of f, while Sy stands for the approximate discontinuity set. Fubini’s
theorem and the fact that Sy is an £™-negligible Borel set, imply that [ A(S:, ) dz = 0. This shows
that A\(S-,,) = 0 for a.e. x € R™. Since, by assumption E; C Sy, it follows that A(E. ) = 0, so
that by Proposition [2.1) we have u* (7, fr) — (72 fe) for a.e. x € R™. Likewise |u!|(72f¢) — A(72f¢) for
a.e. z € R™. Since sup; | pi(Q) < oo, and € is bounded, an application of the dominated convergence
theorem now yields

AT _/m o f))| da. (3.3)

1—00

We stress that (3.3) holds because of the convergence

(R™) and A(Er, ) = 0.

If we can show that, as claimed, A = ||, it follows immediately from and the definition
that n,(u') — n¢(p), showing that part of the claim of the lemma. Moreover, since the total
variation |p?|(€2) is lower-semicontinuous with respect to weak* convergence, it follows from that
each 7 is lower-semicontinuous with respect to the simultaneous weak* convergence of {(u’, |u'])}52,
Consequently also 7 is lower-semicontinuous with respect to the simultaneous convergence (by Fatou’s
lemma). However, assuming that {|u?|}$°, does not converge, let us take a subsequence {z’"}2 , such
that n(u'n) — «a := liminf; . n(u?). Since sup; |u!|(2) < oo, we may move to a further subsequence,
unrelabelled, such that also |pi"| = X for some A € M(L). Since still n(ui") — «, we deduce from
the lower semicontinuity with respect to the simultaneous weak* convergence that o > n(u). This
completes the proof of the claim that 7 is lower-semicontinuous with respect to weak™ convergence of

{ui}e2, alone.

Returning to the proof of A\ = |u|, observe that thanks to the fact that {(f¢, v/)}52, is a nested
sequence of functions, {n,(n)}72, forms a decreasing sequence (for any p € M(2)). Indeed, as fo(z) =
[ fer1(z — y) dve(y) and vp(R™) = 1 with v, > 0, we have

/mmﬁwm:/vﬁmﬂmnwmﬁms//mmwﬁmmmwm
//|M Toty fo1)| dx dvy(y) /Iu Tofoi1)| dz

after a change of variables in the last step to eliminate y. Minding the definition (3.2)), it follows from
here that n9e(u) > net1(p)-

To show A = ||, that is |u?| = |u|, we only have to show |u?|(©2) — |u|(R2). To see the latter, we
choose an arbitrary € > 0, and write

|1l (€2) = 11(2) = me() — me(p’) + / (e fo)| = | (7 fo)| da. (3-4)

Next we observe from the already proved lower semi-continuity of 1 and the bound sup; n(u') =: K <
oo that n(u) < K as well. Therefore, recalling that {n,(u)}?22, and {n,(u")}2, for i = 0,1,... are



decreasing sequences, as shown above, it follows that by taking j large enough, we can ascertain that
sup{ne(1), ne(pt), ne(p?), ...} < e. (Note that n; > 0!) Employing this observation in ([3.4)), we find
that

11(9) — |](€)] < 26 + / (e )| — Vi (o fo))

for any large enough j and all i. The integral term tends to zero as i — oo by (3.3)). Therefore, we
have

Tim [[7(Q) — [l (Q)] < 3e.

Since € > 0 was arbitrary, this concludes the proof under the assumption that the weak* convergences
are in M(R™).

If this assumption does not hold, we may still switch to a subsequence for which p* = [ and
|| = X weakly* in M(R™). Then the above reasoning shows that || = A. But, since € is open,
necessarily i, = p and ALQ = A. This implies A = |u|. By the reasoning above, n,(u'*) — n.(j).
Hence an application of the triangle inequality gives

ne(pe) = ne(AQ) < me(f) = lim ne (™).
As this bound holds for every subsequence, we deduce that each 7y, ({ = 0,1,2,...), is lower-
semicontinuous, and consequently n as well. This concludes the proof. O
Remark 3.1. Since, by assumption, [ fydz = 1, we may alternatively write () = [pm |1|(72fe) —
‘:U’(Txfﬂ)‘ dz.

We will occasionally refer to the following elementary properties that follow from the triangle in-
equality and the fact that supp f; C B(0, hy).

Lemma 3.1. Let {(fe,v¢)}72, be a regular nested sequence of functions and A C R™ a Borel set.

(i) We have
ne(peA) + ne(peR™ N\ A) < me(p) < me(pcA) + 2|p|(R™ \ A).
(ii) If {Az}oerm C M(S2), then

/ ol (rafi) dr < / Dol (A + B0, h)) (7 fo).
A

3.2. A bound on geometrical complexity

We now introduce a quantification of the geometrical complexity of a measure or set. It bears some
resemblance to definitions of uniform rectifiability, as studied by David and Semmes [9]. That notion,
however, does not provide the regularity we need, as it allows considerable “dense” packing of the set,
merely measuring locally the deviation from a Lipschitz surface in a geometric sense. Our notion, by
contrast, measures the deviation in the sense of measure.

Definition 3.2. Let O C R™ open and bounded, and {(fs,v¢)}7°, a regular nested sequence of
functions per Definition Let p € M(Q) be a radon measure, d < m — 1 and L, M € [0,00). We
denote p € Sp?(Q, L, M) if the following hold.

1. p is upper Ahlfors-regular in dimension d with constant M.
2. There exist families G = {G¢}72,, Gr = {I'f | * € R™} of d-dimensional Lipschitz graphs I'j, of
Lipschitz factor at most L, satisfying

Sp(1;G) := Y _ Spy(n; Ge) < 00, where Spy(u; Gp) = /RM\MLOf \TF|(rfe)dz,  (3.5)
£=0

with the notation OF := x + supp f;.



(a) A “simple” set with Sp(I") = oo (b) A “complex” set with Sp(I") < oo

Figure 1: Examples of sets satisfying and failing the condition of Definition

Definition 3.3. We also set
Sp(p) = nf Sp(i;G),  and  Spy(u) := ig/zf Sp(1; Ge),

where the infimum is taken over all families of the type specified above.

Definition 3.4. For a bounded set E C R™, we denote E € Sp?(Q, L, M) if H* E € Sp*(Q, L, M),
and set Sp,(E;G) = Sp,(HILE;G), etc.

Definition 3.5. For the Lipschitz graphs I} from Definition we use the shorthand notations
Vf = Vp%c, gf = gr;, and Zf = Zr;.

Remark 3.2. Even quite simple sets may fail to satisfy this condition, as Example below demon-
strates. This poses the question whether this is a reasonable concept. As an element of justification,
in Example [3.3| we provide an example of a somewhat “complex” set that satisfies the condition. After
that, in Proposition [3.1] we show that the condition implies rectifiability.

Example 3.2. Let us choose hy := 27 and fy(x) = h=2xg(z/h) for Q := [~1/2,1/2]2. We then set
Iy = [0,1] x {0} and Ty = {(x,g(x)) | z € [0,1]} for g(z) = e~'/*, and study p := H' (T'; UT,) on
R2. See Figure for a sketch.

Suppose h € (0,1) and let
An = (he/2,hef2) +{(5,9) | 2 € 0.1~ B, g(o+h) < b y € [gla + b) — h,0]}.
Then, whenever (z,y) € Ay, both
HY TN (2, y) +hQ)) > h,  (i=1,2).
Consequently, by the definition of f}, we find that
(H' L) (g o) = b7 (i =1,2; (z,y) € Ap).

If we set A
G = {1 U \T) N ((z,y) + Q) | (z,y) € R?},
we then have

hy L2 (Ap,) < /A (H'LT3) (T(ay) fre) A, y) < Spo(ps; Gp).-

We want to show that A, has too large measure for condition (3.5)) to be satisfied, that is hzlﬁ2(AhL,)
does not sum to a finite quantity (for any sequence hy N\ 0).

For small enough h, we have

Ap D {(z,y) |z >0, g(x+h) < h/2,y € [-h/2,0]}.



Since g~ (h) = —1/log h, we thus have (for small enough h)

W2 (A) > ! /g_l(m)_h h)2dz = (—1/log(h/2) — h)/2.
0

We observe
x [oe)

Z —1/log(he/2) —he) =D (1/(¢+1) —27°) = o,

= =0
Therefore Y72 Spy(u; Gi) = oo, (i = 1,2).

Finally, we observe that there do not exist families Gy, (¢ = 0,1,2,...), of Lipschitz graphs covering
('t UT2) N ((z,y) + hQ) with bounded constant, so only I'; or I's can be covered, as has been done
above. To see this, one observes that for the Lipschitz constant to be bounded, there must exist a > 0
such that any Lipschitz graph I' covering a part I'; has |(zr,(1,0))| > «. But then either zr is a
tangent vector to I'y, or I's is occluded by I'y when looking in the direction of z. Thus p fails (3.5)).

Example 3.3. Let r; := 27" and I; := {1 —r;} x [0,7], (i = 0,1,2,...). Set then R := [Ji, I, as
sketched in Figure |1(b)l We claim that R satisfies (3.5)) with respect to fy(z) = hZZXQ(x /he), where

Q := [~1/2,1/2]. Indeed, at every (x,y) € R?, let us choose Féx’y) as I'; N ((z,y) + heQ) for the
smallest ¢ such that 1 —r; > x — hy/2. All we then have to do is to calculate

Zi,( = /%ll—(rl \ Fé%y))(T(x,y)fé) d(ﬂj‘7 y)) (Z =0,1,2,.. ) (36)

The term H1L(T; \ Péx’y))(r(xyy)fg) is non-zero only when 4+ hy/2 > 1—r; and x — hy/2 < 1—1r;_1.
Minding that r;_1 — r; = 74, it follows that z is on an interval of length hy — 7;, and hy > r;. For fixed
x we may thus calculate that

y+he
Jorryapioar=n? [ [7 xon @ dedy < vifh.
y
This gives the estimate

7., < (he = ri)ri/he,  he > 1y,
“t 0, otherwise,

for the contribution (3.6) of I';, (i =0,1,2,...), to (3.5). But hy > r; means i > —logy hy, SO summing
the contributions of I'; for ¢ > —log, hy, we obtain

Spe(p) <D Zig < Y (he—ririfhe < Y 1 < 2k
i=0

i>—logy h 1>—logy hy

Thus (3.5) holds when > ;2 hy < co. Moreover, it is possible to show that R is Ahlfors-regular in
dimension 1, the maximum for the constant M for the upper bound being given at (1,0).

Proposition 3.1. Suppose Q C R™ is open and bounded, and p € M(S) satisfies (3.5)). Then p is
concentrated on a countably d-rectifiable set J. If u € Spd(Q7 L, M), i.e.,  is also upper Ahlfors-regular,
then 1 is d-rectifiable, p << HWJ.

Proof. Let G be as in Definition Let K be a compact set containing supp pu + B(0, hg). To con-
struct rectifiable approximations of supp u, we need a partially discrete approximation of the Lebesgue
integral over K. Denoting by a and 3 the regularity constants for { f;}72, from Definition we set
Ay := B(0, Shy). With ¢ fixed for the moment, we then apply the Besicovitch covering theorem on



the family {x + Ay | + € K} to obtain an at most countable (actually finite) set Gy, such that for a
dimensional constant c¢,,, we have

XK < Z TeXA < Cme-
£eGy

It follows that
L7 >t 7L U(E+ Ay, (3.7)
§EGy
Moreover, from the regularity condition for fy, there exists a constant Cy > 0 dependent on «, 3, and
m alone, such that

Z Tgfg > Z hzmaTngl > he_maxK > Cy/L™(Ap)XK- (3.8)
£eGy §eGy

Now, with this preliminary setup taken care of, let us for any given y € A, set Jé/ =U
Then J} is H%-rectifiable and we may, using (3.7) and (3.8)), approximate

z
z€Go+y FZ :

Spy (115 Ge) = / L OF \T¢| (72 fy) da

>l [ wop\ Tt dy

zEY+Gp

> c;,f/A Do |\ T (rufe) dy

reYy+Gp

Cy
P QN JY d
2 (A /AZWL \ | (ryxk) dy

Cy /
> = Q\ J7)dy.
~ emLm(Ayg) A¢|M‘( Vo) dy

We thus deduce that there is a choice of y, € Ay with
Spe(13 Ge)emC™ = (N JF*).
Setting J := J;2, J/*, it follows from observing
(N TF) = [pl (2 )

and letting £ oo that |u[(2\ J) = 0. Since J is H%rectifiable, this gives the first claim of the
proposition. If |u| is upper Ahlfors-regular in dimension d, we then have |u| < H?_J. We conclude
that p is rectifiable. O

We finish this subsection by showing lower-semicontinuity of the functional p +— Sp(u) + |u|(€),
and, consequently, a closure property of bounded sets in the space Spd(Q, L,M).

Proposition 3.2. Let Q C R™ be open and bounded. Suppose {u'}2, € Sp(Q, L, M) with

sup  Sp(p') + [p'[(€2) < oo.
i=0,1,2,...

Then any weak* limit ju of (a subsequence of) {u'}2, satisfies u € Sp(Q, L, M) and

Sp(1) + [1)(€) < lim inf Sp(u) + || (©).

10



Proof. Let € > 0 be arbitrary. Let G* = {G}}3°,, G} = {Ff’i | x € R™}, be such that
Sp(u';G') < Sp(p') +¢, (i=0,1,2,...).
Then it suffices to show that
Sp(: G) + /() < lim inf Sp(u's G*) + ' ()
for some G = {Gy}7°,, Gr = {I'7 | x € R™}.

We use the shorthand notation zf’i = Zpe, and gf’i = Gpei- We may assume that

v

1
F?’i = _PZ;YZ'.B(.T7 hf)

This is because we may (see, e.g., [10]) extend gf’i from Vi=: to the whole space (zf’i)l, without
L

increasing the Lipschitz constant.

We may, moreover, assume that g’ = p € M(Q), and |u| = X € M(Q), where A > |u|. The
claim of the proposition now follows by an application of Fatou’s inequality in (3.5)), if we show for all
£=0,1,2,... and almost all x € R™ that

lim inf| ' OF \ T3 (rafe) > | OF \ TF| (72 fo) (3.9)

for some Lipschitz graph I'j with constant at most L. Indeed, with £ = 0,1,2,... and x € R™ fixed,
we may for each i =0, 1,2, ..., define a Lipschitz map g; : B(0,h¢) C R™™! — I'? of constant at most
L by gi(v) = gf’i(ac + Rz;,w) with R, € R™*(m=1) the basis matrix of z. Then, since Lipschitz maps
of bounded constant are compact in the topology of pointwise convergence, we define I'j as the image
of the pointwise limit g of a subsequence of {g;}7°,. Rotating the domain of g back on 2 with z a
limit of a further subsequence of {zZ“ oo will show that I'} is a Lipschitz graph.

Let us then write

\WLOEN\ T (1o fo) = |1 (o fe) — |1 D5 | (7 fo). (3.10)
For almost all z € R™, we have (as follows from, e.g., [2, Proposition 1.62])
|:ui‘(7_zf€) - )‘(Tocff)- (3.11)

Moreover, we have

A7z fe) = AOF\TE) (e fe) + (ATE) (7 fe)

> | OF \ TF| (e fo) + (ATE) (7 fo). (3.12)

On the other hand, any weak* limit X of (a subsequence of) | Mi]Lff’i satisfies X < AL}, Moreover, for
a.e. x € R™, we have |p' T}"|(T2fe) = A(72.f¢). Thus, minding (3.10)-(3.12), we deduce

liirgglf‘ﬂiLOf \ F?ﬂ(ﬁ@fﬁ) = liirgglf <‘UZ}(Txf€) - ‘/‘iLF?7i|(Tzf€)>

> |pOF \TF| (e fo) + (ATF) (72 fe) — lim sup| ' 5| (7. f2)
71— 00

> | OF \T7 (70 fo) + L) (7 fr) — N7 fo)

> | OF \TF|(1ofe) for ae. z € R™.

But this is (3.9). Since upper Ahlfors regularity clearly holds for pu with constant M by the lower
semi-continuity of |u|(B(x,r)) with respect to weak* convergence, we may conclude the proof. O
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3.3. Bounds for 7

We now intend to derive bounds on 7(y) for measures p € Sp?(Q, L, M). Throughout we assume that
exactly the same regular nested sequence of functions {(fr,v¢)}72, is employed in the definition of
Sp(u; G) and n(u). We begin with a technical definition. We need a concept of “bounded variation on a
family of Lipschitz surfaces”. With this notion we can limit variations in the “intensity” of a rectifiable
measure f, while bounds on Sp(u;G) limit variations in the geometry. Both bounds together then
bound 7(u).

Definition 3.6. Suppose 6 is a Borel function on a countably H%rectifiable set J C R™, and G a
family of Lipschitz d-graphs. We then set

19llv(g) :== SUPZ 160 gr, BV (1s:,)
ry;

where the supremum is taken over all finite disjoint sub-collections {T'1,..., 'y} C G, (N > 1).

We now state the bounding result. We recall that a and {h¢}7°, denote regularity constants for the
maps { f¢}72, from Deﬁnition Condition below is required for uniform constants in Poincaré
inequalities; it can trivially be satisfied by extending the domains V" of the Lipschitz graphs I'j to
the whole space (2¥)1, as can be done according to [10].

Proposition 3.3. Let Q C R™ be open and bounded. Suppose p = OHWJ € Sp*(Q, L, M) with
Sp(u; G) < oo for the collections G = {Ge}72, Ge = {I'} | © € R™}, of Lipschitz graphs of constant at
most L. Suppose, moreover, that

'Y N B(x, hy) #0, and ijr; = PZJZ'DB(x,hg), (t=0,1,2,...; x € R™). (3.13)
Then
ne(p) < Cshi||0llpv(g,) + Spe(1s; Ge) (3.14)

for some constant Cs = Cs(L,m,d, ). In particular, if 3 ;o, h¢ < oo, then
n(u) < Co( _sup 10llBv(g,) +Sp(1; G))
for C¢ = Co(L,m,d,a, hzl).
Proof. Let £ € {0,1,2,...} be fixed. By writing # = 6 — §~, where 6% > 0, we deduce
) = [ 1l o) = InCre o) d

— 2/min{/ 9+Txfgde,/9_Tmfgd7‘ld} da.
J J

Writing J = (JNI§) U (J\TIY), we get

(3.15)

ne(p)/2 < /min{ 0 70 fo d?—[d,/ 0 7o fo d?—[d} d:c—l—/‘,uLOf\Ffl(Txfg) de. (3.16)
rs Ff[f

L

Since the minimum is non-zero only if both 61|07 # 0 and 6~|07 # 0, only points z in the set

Zy:={x € R™ |0 € convd(I'y), I'{ N B(x, hy) # 0}

12



contribute to the first integral in (3.16)). Applying (3.5)), we thus obtain

w2 < [ min{ [ ornpant, [ QTxfed’Hd} d + Spy(1: Go)
Zg 7 ¢

< alh;m/ min{/ ot de,/ 0~ de} d + Spy(; Ge)-
Zy i ¢

In the final step we have used the regularity of {f;}7°,, i.e., fo < a*IthXB(O,he).

(3.17)

Next we set By := B(0,(2L + 4)hy), and apply the Besicovitch covering theorem on the family
{B¢+z | x € Z;}. With ¢, a constant dependent on the dimension m alone, we thus find finite
collections F},...,Ff’” C Zy satisfying Zmer TeXB, < 1, (= 1,...,0n), and X p TaXB, > Xz,
with Fy := (J;™, F}. Applying the cover Fy + By of Z; in (3.17), and denoting I'J(0) = [ 0 dH?, we

4

may write
ne()/2 < o~ / SO min{T(07), TE(07)} dy + Spe(1s; Ge)
z€(Fp+y)NZ,

min{T§(07),T7(07)} dy + Spy(u; Ge)
:DE(F[-}—y NZy

(3.18)

By

for some constant C7 = C7(a, m, L). By the definition of Fy as | J;™, F}, it follows that to bound ns(u),
it suffices to show that there exists Cs = Cg(d, L) such that

Y. min{T(07).T7(07)} < Cshi|0]lsvig,) (3.19)
xG(FZ+y)ﬁZg

for L™-a.e.y € Byand alli € {1,...,¢en}.

To begin the proof of (3.19), we observe that J3(Vgy(v)) < Cy for some Cg = Cy(m,d, L). This is
due to the continuity of J; and the bound ||Vg7 (v)|| < L. Thus the area formula yields

rE %) = . 0% dHe = /w(e)i 0 ) Ta(Vg¥) dv < Cy . 0% o g7 dv. (3.20)
4 4

Let us momentarily fix x € Zy, and set V = V", 0t = o+ °ogy, z=z;, and =0 o g;. We intend to
apply Corollary Towards this end, we set () := £ (V \ supp6F). Then p(H) (V) + p(V) >
L£4(V), so minding (3.13)), we have

max{u ) (V), i D (V)} > £4V) /2 = LYPFB(x, he))/2 = h{L4(B(0,1)) /2.
Since ,u(i)(gi) = 0, we may apply Corollary to get either
H§+||L1(V) < h?010|’§+”BV(V) or |6~ 21y < h{C1ol10~ BV
for a constant Chg = Cio(d). As ||6F||py v) < |]«9||BV , by the definition of #%, this gives
min{ 67|z vy, 167 21y} < R CrollBllmv )
That is

min{[|0% o g7 [l 1), 107 © 97 vz} < hEColl6 © g llv (v (3.21)

Next, we observe that with all £ € {0,1,2,...}, i € {1,...,¢n}, and y € By fixed, the graphs
{T¢ |z € (y + F} N Z)} are disjoint. This follows from the balls « + By, (z € y + F}), being disjoint
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by construction, and from I'y C x4+ By = B(x, (2L + 4)hy). The latter holds due to assumption (3.13])
and g7 having Lipschitz factor at most L. Combining (3.21)) with (3.20) thus finally yields

> wmin{TF(O1),TFO7)} < CoCrohf Y (100 gfllsvoy
c€(Fj+y)NZ, z€(Fj+y)NZ; (3.22)

< CoCroh{|0||Bv (gy)-

To conclude the proof of the proposition, we only have to observe that (3.22) yields (3.19). O

Remark 3.3. Let {(fg,ﬂg)}?‘;o be another nested sequence of functions that satisfies f; < Cf; for
some C' > 0. Then in (3.16|) we could approximate

J Um0z \ 1|ty do < [ CluaOF \ (7o) di < CSy(s G,

where Sp, denotes the functional Sp, obtained with the sequence {(/fr, Ug) 2, Thus it would, at the
expense of additional technical complexity that we want to avoid, be possible to express our results
for different sequences of nested functions for the definitions of n and Sp.

3.4. Compactness in SBV(Q; RK)

We finish this section by providing some compactness results in SBV(Q; R¥) following immediately
from the results above. They can be useful in applications for proving closure properties. We need
to work with vector-valued measures u € M(Q; RE*™). The results above on Sp(p) can readily be
extended to this situation with no changes in proofs or definitions, but for concreteness we work
through the following definition.

Definition 3.7. For p = (i) € [Sp™ 1(Q, L, M)]X*™ we denote Sp(u) = Zfil Yo Sp(pig)-

Our main compactness result is then as follows. The difference to the well-established Theorem
is that we replace H™ 1(J,:) by Sp(D7u?).

Theorem 3.2. Let & C R™ be open and bounded, and {u'}°, C SBV(;RE). Suppose ¢ :
[0,00) — [0,00) is non-decreasing with lim; ;oo ¥(t)/t = oco. If each DIut € [Sp™ 1 (Q, L, M)]|K>*™,
(i=0,1,2,...), and

sup ||Ui||L1(Q) + /w(VuZ(x)) dx + | Du'| () + Sp(D’u?) < oo, (3.23)

there then exists u € SBV(Q;RX) with Diu € [Sp™ H(Q, L, M)|X*™ and a subsequence, unrelabelled,
such that

u' — u strongly in L*(Q;RE), ( )
Vu' — Vu weakly in L'(€; RE*™), (3.25)
DIt = DIy weakly* in M(Q;REX™) and (3.26)
Sp(D7u) < liminf Sp(D7u"). (3.27)
1—00
Proof. Let us denote by K the supremum on the left side of (3.23]). We then deduce from (3.23)) that

sup [|u'[| 1) + [Du’|(Q) < oo

Moving to a subsequence, unrelabelled, we may thus assume that u’ — u weakly in [BV(Q)]* for
some u € BV(Q;RX). This gives (3.24). Moreover, because {Vu'}22, is an equi-integrable family,
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we have the existence of some w € L'(Q2;RX*™), such that for a further unrelabelled subsequence,
Vu! — w weakly in L'(Q; REX™). Still, selecting another subsequence, we find from Proposition
that Diu? = X for some A € [Sp™ H(Q, L, M)]F>*™ with Sp()\) < liminf; o Sp(D7u?). Minding that
VulL™ + Diul = Du' and Du' = Du by the weak convergence of {u}22 in BV(€2; RX), we therefore
have

wL™ + X = Du = Vul™ + DIy + Du. (3.28)

Since A € [Sp™1(Q, L, M)]Exm, Propositionshows that the measure )\ is concentrated on a H™
rectifiable set J. This gives w = Vu, showing . According to [2], the Cantor part Du vanishes
on any Borel set B that is o-finite with respect to H™ 1. In particular DucJ = 0. Hence, by ,
A = DJu and D = 0. This shows that u € SBV(2; R¥) as well as (3.26) and (3-27), thus completing
the proof. O

We now state a corollary that be used to prove the closedness of equations like . Specifically, we
show stronger convergence for T o Diu! with T : REX™ — R a bounded linear operator by bounding
n(T o Diut). When K = m, choosing T = Tr as the trace operator, we get the convergence in total
variation of the jump part Div/ v’ := TroDJu’ of the distributional divergence, appearing in and
more precisely given by

m

Div/ u'(p) = (TroD?u')(p) = D (e, DIt (p)en), (0 € Cel(R)).

n=1
Here eq, ..., e, is the standard basis of R™.

Corollary 3.1. Let Q C R™ be open and bounded, and {u'}3°, C SBV(;RE). Suppose v : [0,00) —
[0,00) is non-decreasing with lim; o ¥(t)/t = 0o, and T : REX™ — R a bounded linear operator. If
each Div' € [Sp™ Y(Q, L, M)|E>*™, (i =0,1,2,...), and

sup HuiHLI(Q) + /w(VuZ(x)) dz + | DIu'|(Q) + Sp(D?u) 4+ n(T o DIu') < oo, (3.29)

then there exists u € SBV(Q; RE) with Diu € [Sp™ 1 (Q, L, M)|X*™ and a subsequence, unrelabelled,
such that (3.24)—(3.27) hold along with

T oDy’ = ToDiu weakly* in M(Q), and (3.30)
|T o DIu'|(Q) — |T o DIu|(). (3.31)

Proof. Theorem shows that (3.24)—(3.27) hold. As an immediate consequence, we also get (3.30)).
Now (3.31)) follows from Theorem O

4. Technical results

We now prove a couple of general technical results that we will be needing in the proof of the approx-
imation theorem. We begin with a result on graph approximation, for which we need the following
elementary lemma.

Lemma 4.1. Let I' C R™ be a Lipschitz (m — 1)-graph with normal field vr. Then

(vrogr)(v) = ArVgr(v)/[[ArVgr (v)[l,  (a.e. v € Vp),

for the linear operator Ar defined by

AFG = (I — HFG*)ZF,
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with Hr : zf: — R™ the injection operator and G : zIL‘ — R™ an arbitrary linear operator. Moreover

[Ar| > 1,

and the map defined by
Fp(G) := ArG/ max{1, | ArG||}

has Lipschitz factor Lip(Fr) = 1.
Proof. For some [T : z% — R we have gr(v) = Hrv + fr(v)zr and

Vgr(v) = Hr 4+ 2r ® V fr(v).
We have Hfzr = 0 and

HpVgr(v) = HpHr + Hpzr @ V f(v) = HpHr = 1,
so that for any v’ € zi, v € Vi, we get
((I = Hr(Vgr(v))*)zr, Vgr(v)v') = 0.

Since the tangent cone Tr(gr(v)) = Vgr(v)zi a.e., this says that

(I =Hr(Vgr(v)))ezr  ArVgr(v) o
vr(gr(v)) = 0= Hr (Vo) o]~ TArYer @)’ (a.e. v € V).

Thanks to Hfzr = 0, we deduce that

1Ar|| = [lor — HrG*zrll = V/|lzrl? + [ HrG*2r 2 2 |lor| = 1,

(4.1)

(4.2)

with G : z& — R™ an arbitrary linear operator of norm ||G| = 1. Finally, thanks to || FTG|| < ||ArG]||,

we have

[FTrG1 — FrGa|| < [[ArGr — ArGs|| = [[Hr(G1 — Ga)"2r|| < |G1 — G2,

so that Fr is Lipschitz with factor Lip(Fp) = 1.

O

Lemma 4.2. Let T' @ R™ be a Lipschitz (m — 1)-graph with OI' C int Z and H™1(OZNT) =0 for a
closed set Z. Let {sk}22, C (0,5) with s* \, 0, (k — oc). Suppose that Vgr € BV(Vp; R™ x zi+). Then
we can find polyhedral Lipschitz graphs {Fk}zozo of factor at most L' = L'(T), satisfying OT* C Z,

2rk = 21, VFk c Vr, (k =0,1,2,.. .), and
¥ c T\ Z+ B(0,s"/2).
We also have the convergences

H™UTF N TN\ Z weakly® in M(R™), (k — o0),

vpe LR =y U D\ Z weakly® in M(R™; ™Y, (k — o0).

Regarding the maps {grx }32, we have Vgpr € BV (Viw; R™ x 2i+) with

lgre — gFHLOO(VFk;Rm) < sk/2,

v 0 g — vr o grll iy, mmy < 8%, and

[vpx o ng”BV(VFk Rm) < HVgF’“HBV(VFk;Rmel{-) < CIl(HQFHLl(VF;Rm) + HVQFHBV(VF;RWle{-))

for some constant C11 = Cy1(m).

(4.3)
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Proof. Suppose we construct I'* := ng(?k) \ Z for some grk : 2 — R™ of Lipschitz factor at most
L', and polyhedral V¥ C V¢ with T' € gr(V¥) U Z. Then zpr = 2r and Vv = g;kl(l“k) C VF with
dT* C Z holding. Moreover, (.3) follows if we show (Z.0)).

Since ||Vgpr(v)]| = 1, (v € V*), we deduce from Lemma that vpx o gpx = Fpr o Vgp for the
Lipschitz function Fr. Since |Vgrx(z)|| > 1 and ||FT, (G)]| < 1 for all z, G, we find that

lvre o grellyy, (Vo R™) = = || Fpw °V9rk||L1(VFk,1Rm) < |IVarellpyy, Vi iR™) -

If Vgrs € BV(Vpr; R™ x z:), it thus follows from the BV chain rule and Lip(Fy«) = 1 that vps o gpw €
BV (Vrr; R™) with

lvrk © grw HBV(V g Rm) = | Frr © Vgrs HBV(V & R™)

= HFFk o] Vgpk o RZF ||BV(RZ_/\1VFk;Rm)
< ||z = Vgrs (RZI‘x)RzI‘”BV(RZ_AIVFk;Rmx(m—l))
= HVQFIVHBV(VF;C;RszlJ:)‘

From the Lipschitz property of Fy«, we also deduce that

lvrk © gre —vr o grllpa(vymmy = (e © Vgre — Fr o Vgr|lpiy , rm)
< |Vgre — VgFHLl(VFk;Rmszl)'
Thus (4.7) and (4.8]) follow from showing
||v9FkHBV(VFk;Rm><zlJ:) < Cll(”gFHLl(Vr;Rm) + ||VgFHBV(VF;Rm><zf:))7 (4.9)
and, respectively,

IVgrs = Vorl v ety < 8° (4.10)

Next we want to show that (4.4), (4.5) follow if we show (4.6]) and (4.10). Indeed, let p € C°(R™)

and define U := R;F1 Vk aswell as § = groR.,. and g* = grxoR..., where we recall that R, : R™~1 — 2+
is the basis matrix of z1. Then the area formula gives
/ - QOde_l o / - (,Ode_l
gre(VF) gr(VF)
= [ #@ @) Tur(VF@) o~ [ o) Tnr (Vi) do
Employing the fact that the map (x,y) — xy is Lipschitz on bounded sets, it follows that
B </\s0 )T (VG ) — 9(5(2))Tn-1(VG ()] it
9k (VF) Vk)
< Cua ([ Jol" (@) — (@] e+ [ |Ta (V5) - Tocr (V)| o) (4.1
U

for some constant C12 = Ci2(p, L'). Minding , the first integral of goes to zero because
¢ € CX(R™) is uniformly continuous. For the second integral, we observe from that Vg"
converges to Vg in L', which we recall to imply almost uniform convergence for a subsequence. That
is, after possibly switching to an unrelabelled subsequence, for every e > 0 there exists a measurable
subset £ C Q with L™(Q\E) < ¢, and V§* — Vg uniformly on E. By the uniform Lipschitz continuity
of {gk}z"zo, the values of Vg¥ moreover lie in a bounded set. With these observations it now easily
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follows that the second integral of (4.11)) also tends to zero. Thus the left hand side of (4.11)) tends to
zero. We have therefore shown that

H™ Lgre (VF) = H™Lgr(Vr).
By assumption H™1(I'N 82) =0, so that by Proposition
H™ L gre(VF)\ Z = H™ Pigr(Ve) \ Z. (4.12)
Minding the construction of I'*, we have both

HUTF = H™ g (VN Z and H™ 'Lgr(Vp)\ Z = H™ LD\ Z. (4.13)

The convergence (4.4) now follows from (4.12)) and (4.13]). Since (4.5)) can be shown in a similar fashion
with the help of (4.7), we skip the details.

It remains to construct grx and Vpx such that (4.6]), (4.9), and (4.10]) hold. To begin with, let {7;}7°,,
be a sequence of uniform triangulations of zlﬁ each a subdivision of the previous with edge length
approaching zero as £ — co. We then let

=\ J{TeTITcw}

For sufficiently large ¢, we have ' \ ZC gr(vg) and gp((?%) C int Z. Since Vgr € BV(Vp; R™ x zi),
we may by mollification approxnnate gp on V; by smooth functions g., satisfying for sufficiently small
€ > 0 estimates of the type (4.6)), (4.10) along with ge(avk) C int Z and

||V96HB\/(‘71@;RmX21{_) < ||VgFHBV(VF;Rm><zf:)'

Moreover, the Lipschitz factor of g, is bounded by that of gr. As a consequence of this approximation,

we may assume that
gr € W (Ve R™) n W2 (Vp; R™). (4.14)

For each £ =0,1,2,..., we denote by {xg,n}f\iél the nodal points of the triangulation 7. Define ¢,
such that it is affine on each T and

supp o C Ko = | ) T
Ten:xg’neaT

We then define g* : VF 5 R™ as

My
= ou (@), (B=10,1,2,..)

n=1

for some £(k) > k. That is, g* is the Lagrange interpolation of g on Te(r)- Minding that we have without
loss of generality assumed (4.14)), choosing (k) is sufficiently large, we observe that g* satisfies for
some constant Cy3 = Cy3(m, T') the standard finite element estimates (see, e.g., [5])

HngWLoo(\’}k;Rm) S Cl3HgFHW1,oo(VF;Rm),
||gk - gFHLOO(‘A/"k;Rm) < 5k/2, and
vak _VQFHLl(ﬁk;Rme) < Sk/4, (k:0,1,2,...).

In particular, g* has Lipschitz factor at most L/(T') = Cisllgr|lw.eo (vpmmy, and (4.6)), are
satisfied. Finally, to show (4.9), we observe that

||v9kHBV(VFk R X z) < Cl4||gI"HW2,1(VF;Rm)7 (k =0,1,2,.. ')a (415)
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for some constant Ci4 = 014(m,Tl). For piecewise affine shape functions, this does not follow from
standard results due to insufficient regularity. If we use smooth (or W!) shape functions, we however
get by standard results (see [5, Theorem 4.5.11]) that

IVg* IBV(V o Rmxzt) < 9" w21 v mmy < Crallgrllwspmmy,  (k=0,1,2,...).
F I

Fk7

Thus, to get , we can simply approximate the piecewise affine shape functions by smooth shape

functions on the same triangulation 7% and pass to the limit. (To construct such smooth shape

functions, for each ¢ = ¢, with support K = K ,, we may take a sequence of functions {1;}°, such

that ¢; = 1 on {z € K | dist(0K,z) > 1/i}, and ¢»; = 0 on {z € K | dist(0K,z) < 2/i}. As smooth

approximations of ¢ supported on K, we take we take gol = (p1/(20) © R;Al) x (i), (1 =0,1,2,...).

Here {pe}eso are the standard mollifiers on R™~ = R Szt O
1

Lemma 4.3. Let F be a finite collection of maps ¢ € C*(c1Q x R™ x R™ x S™~1). Denote
Tyu =P u u™, v YH™ Ty, (¥ € F). (4.16)

Suppose that F includes the functz’ons Y (xut uT,v) = oy, and wi Cxyut T, v) = (uh); for
ic{l,...,m}. Let {v,w® w',w?, ...} C SBV(£; RK) N L3S (Q; RE) satisfy

sup H™ 1 (J k) < o0, (4.17)
k
supn(Tyw") < oo, (¢ € F), (4.18)
k
I/kaHm_ll_ka oy MU, weakly in M(Q;8™7Y),  and, (4.19)
(W) EH™ U T e = 0FH™ I, weakly® in M(Q;R™). (4.20)

Then, after possibly moving to an unrelabelled subsequence, we have Tyw® = Tyv and |Tyw®| = [Tyv|
for ally € F.

Proof. Let ¢ € F. The function v is bounded on the compact set cl 2 xcl B(0, M) xcl B(0, M)x S™~1),
so that, minding HwkHLoo(Q;Rm) < M, the sequence {Tyw*}2°, is also bounded in M(2). Therefore,
after possibly moving to a subsequence, we may assume the measures {7, wwk 122 to converge weakly*
to some wy € M(R), and the measures {|Tyw*|}2° to converge weakly* to some Ay € M(Q). By

(4.18) and Theorem [3.1}it follows that Ay = [wy|.

The question remains, whether wy, = T,/w. Indeed, it follows from the weak™ convergences (4.19))
and (| - ) that wy, = Tyv for v =YY, ;" (z =1,...,m). In particular

Pk = po - and gk [(2) = 10| (£2). (4.21)
for puy, := (u,u™, vy YH™ Ty € M(Q;R™ x R™ x §S™~1),

Minding that vy, (2)|| = 1, we may now write for f € C°(€Q) and

b z
) abv = aava)
r(oab,2) = S (s 1 5 ) e

that

) (@), u (2),vy,(2)) dH™ L,

)¢(x, ut(z),u(x),vy, (ac))
)

(ut (@), u= (@), va, (@)

I
du®
(g5 ) o)

(x, U

/ f(2) dTyu(z) =
Q

IRC
:/Qf(x
"

d|pul ().
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The function ¢ is continuous, because v is C*, ||lv,, ()| = 1, and

V@)l = l(u™ (@), u™ (@), v, @)/l (@) = [|(u™ (@), v (), va, (@))]] < V2M? + 1.
It therefore follows from the Reshetnyak continuity theorem (see, e.g., [3, Theorem 2.39]) and (4.21))
that Twwk = Tyv. Hence py, = Tyv. O
Next we prove a trace result.

Proposition 4.1. Let V C R™! be an open and bounded, f : V — R Lipschitz continuous of factor
L, and o > 0. Define
Q:={(z,s) e VxRI|se f(z)+ (-0 0)}

and g(x) = (x, f(z)). Suppose u € WL(Q). Then u has a trace ur on T := g(V), and ur o g €
Whoo(V) with
[[ur o gllwr.eo vy < Cusllullwooq) (4.22)

for some constant C15 = C15(L, m).

Proof. The existence of a trace ur € L'(T') follows from standard results. We just have show that
ur o g is Lipschitz on V. Let us set U :=V X (—p, ) and

v(z,s) = u(x, f(z)+s) =u(g(z,s)) ((x,s)€U),

where g(x, s) := g(x) + (0, s). We have

V§(z,5) = (Vgé$)> " (8 ?) L ((ws) € ),

as well as
Vo(z,s) = Vg(z, s)Vu(g(z, s)),
so that clearly v € W1°°(U) with the bound

[v[lwreo@y < Crgllullwoe ) (4.23)

for some constant C1g = C16(L, m).

Since u is (Lipschitz) continuous, as is v, we observe that ur o g = vg := v(+,0). But clearly, still
by continuity, Lipschitz continuity is preserved by traces on affine sets, in particular on V' x {0}. We
therefore obtain

lvollw.ee vy < llllwrree 0y (4.24)

Combining (4.23), (4.24) shows (4.22). O

Proposition 4.2. Let V .C R™ ! be an open and bounded, f : V — R Lipschitz continuous of factor
L, and o > 0. Define

Q:={(z,s) eV xR|sc flx)+ (0,0}, QF:={(z,5)eV xR|se f(z)+(0,%+0)},

and g(z) := (x, f(z)). Let T := g(V). Suppose u € WH¥(Q\T) with H" 1 ({z € T | ut(z)—u"(2)}) =
0. Then there exist extensions v(*) € Wh°(Q) of u|Q*F, satisfying

[0 ooy < lullpoo(ary  and  [[vE|lree () < Crzllullwioe ) (4.25)
for some Ci7 = Ci7(L,m,u). Moreover

Lr{z e Qv (z) =0T (@) =0. (4.26)

20



Proof. From Proposition we deduce that

[u* 0 gllwreery < Cusllullwreoq)

for C15 = C15(L,m). Let qo,q1 : RT — RT be the saw-tooth functions that oscillate between the
values 0 and 1 at slope [qy| = |q1] = 2[|Vul|p(q), with initial values go(0) = 0 and ¢;(0) = 1. Let
p(x) = g(P(%’l)(ac)) be the projection of z on I' (along 2r = (1,0)). Then the functions u® o p are
Lipschitz with factor at most L||Vu| fec(q+rm). Consequently, defining

o®(z) = {u(»@)a v € OF,
a1 (|lz = p(@)[)u*(p(x)) + go([|= — p(2) Nu¥ (p(2)), = € QF,

and minding that u* and qo, q1 are bounded, we find that v* are Lipschitz and ([#.25) holds for some
C17 = C17(L, m,u). Moreover, we deduce (4.26)) thanks to H™ 1({z € T'| u*(2z) —u~(x)}) = 0 and

LY{s e flx) 4+ (=6,8) | v P (z,s) = v (z,5)}), (ae zeV).

The latter follows from the fact that by construction the functions x — ¢;(||z — p(x)|), (¢ = 0,1,),
oscillate faster than w on lines {y} x R, (y € V). O

Remark 4.1. The property (4.26) together with preserving the L® bound in (4.25]) are the reason
for not using standard Sobolev or Lipschitz (cf. [L0]) extension results.

Remark 4.2. Both Propositionf.1]and Proposition[4.2] can easily by a rotation argument be extended
to domains Q = gr(Vr) + 2r(—o, 0) defined by a general Lipschitz graph T

5. The space and boundary covers

We now introduce the space A(; RX) of functions admissible for the approximation theorem stated
in the next section.

Definition 5.1. Given an open set  C R™ with Lipschitz boundary, we denote by A(Q; RX) the set
of functions u :  — R that are in W1 (Q\ J; R¥) for a (with respect to Q) compact set J = J, C Q
satisfying the following;:

(i) H™ YT\ J,) = 0.

(i) J = Uf\il A;, where A; is a Lipschitz (m — 1)-graph of constant at most L.

(iii) A;NA, COA;UOA, and A; N0 C OA;. with OA; = gAl.(aVAi), (i,n =1,....,N; i # n),
(iv) J € Sp™1(Q, L, M) for some M € (0,00).

(v) Each Vi, (i =1,...,N) has Lipschitz boundary.

(vi) Vga, € BV(VA;R™ x 23 ), (i =1,...,N).

We will henceforth use the shorthand notation V; := Vj,, ¢; := ga,, and z; := zp,.

Remark 5.1. Observe that if {u’}°, C A(Q;RF) with the same constants L, M, i.e., Jui €
Sp™ HQ, L, M), and if

Sup [l 00 7.y + H™ " (us) + SP( ) < o,

then it follows from Theorem and Proposition that there exists u € SBV(Q;RX) with
ju € Sp™1(Q, L, M) such that the convergences @ f hold for a subsequence. Similar closure
properties for sets within the space A(€; R¥) itself would depend on further limiting the complexity
and number of the graphs {A;}Y,.
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In the remainder of this section we provide a series of technical lemmas studying the covering of
Uf\il OA; by cubes on a grid. We begin by definitions related to the cover.

Definition 5.2. We denote @ := [0, 7]™ and rQq := [0,7)™ for r > 0.

Definition 5.3. Suppose Z = X 4+ r(@ for some set X C y+rZ™ with r > 0 and y € )g. We then say
that ¥ C 07 is a face of Z if for some £ € X the set F — £ is a face of rQ), i.e., for somei=1,...,m
and 0 € {0,1}, we have E=¢ +r{z € Q | (z,¢e;) = 0}.

Definition 5.4. Suppose J = Uf\il A; is as in Definition Denote 8.J := Uzj\il OA;. Then for r» > 0
and y € Qq, we let

o= {cerZ™| (£+2rQ)NdJ # 0},
FY:=ry+F,, and
zZ¥=F/+rQ.

The sets Z7, (y € Qo), are the covers of the boundary we are interested in. We now show a bound
on the size of the cover, and then an average density estimate for sets in the neighbourhood of this
family of covers. Then we will prove further lemmas.

Lemma 5.1. Let J be as in Definition[5.1 There then exists a constant C1g = Cis(.J) such that for
eachr >0 andi=1,...,N there are K < Cr?>™™ open balls By, ..., By of diameter at most r with
OVAi C U?:l By..

Proof. This is a consequence of the Lipschitz boundary property Definition . We take an open
cover Uy, ..., Up of OV}, such that OVj, N U, is a Lipschitz graph (in the (m — 1)-dimensional space
zt) for each n =1,..., M. Each of the sets 0V, NU,, may, as a Lipschitz graph of dimension m — 2,
trivially be covered by Ci7nr2_m open balls of diameter at most r, for some C;,, = C; ,,(J). O

Lemma 5.2. #Fr < C19T2_m for Cig = Clg(J).

Proof. One simply considers the cover of V; by K < Cr?~™ balls By,... By of diameter r from
Lemma Since g; is Lipschitz of factor at most L, covering the images g;(By) by squares rQ + &
with & € rZ™ produces the claim. O
Lemma 5.3. Let J be as in Definition and J' = JN| A, for Lipschitz (m — 1)-graphs {A}}Y
Then there exists a constant Cag = Ca(J, N', m) such that for every r > 0 and h € (0,7], we have the
bound

/ H™ (T N (ZY + B(0,h)) \ Z¥) dy < Cooh. (5.1)
Qo

Proof. As Xpyirq(%) = D cck, Xetry+r@(a) for LM-a.e. y € Qo, we begin by calculating

/Q XFyr() dy = / > Xetryaro(@)dy =17 / Xety+rq() dy.

Qo £€F, ¢ek,

Using X gy 4,0+ B(0,1) (%) < D¢, Xetry+rQ+B(0,n) (T), we similarly get the inequality

/ XF¥+rQ+B(On) (@) dy < 7™ Z/ Xet+y+rQ+B(0,h) () dy.
Qo ¢ch,
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Denoting the left hand side of (5.1)) by A, 5, we may now write
A= [ [ zreon@ = xzp@) @y
0
= / L Xainaunon (@)~ Xpirgle) vt )

om // Z / Xé+y+rQ+B(0, h)( x) — X€+y+rQ($) dy de_l(Qj)

1308

= Z // /Q (€+rQ+BOMN\(E+rQ) (T — y) dy dH™™ L(z).
0

EEF,

Employing the fact that J' = Uf\i 1 AL with Al (Lipschitz) graphs, we deduce the existence of a constant
Cy1 = Cy1(N',m) such that

/ / xe(z —y)dydH™ 1 (z) < Coyr™™! / - xe(z)d (5.2)
" JrQo / 0,rm

for Borel sets E. Indeed, let A = A, and z = zp;. Then, since

Qo C P.Qo + P;Qo C B(0,m),

we have

// xe(z —y) dy dH™( // / g((x—t) —y)dydtdH™ (z)
A JrQo P.rQo PLrQo
:/ / xe(x —y)dxdy
PZJ_TQO A—P.rQo
< / dy/ xe(x)dx
PrQo A—P.rQo—P;rQo

< 0227“m_1/ xEe(7) dz.
A—B(0,rm)

In the final step we have employed the fact that Em_l(Pero) < Coor™~ ! for some constant Cay =
Cs2(m). Summing over the estimates for A = A}, ..., A}y, now gives (5.2).

With (5.2) at our disposal, we may now calculate that

Appy < Copr™™ f; el / oy EFTREBOMNEQ (z) dx
=Cor™" Y L™((J' = B(0,rm)) N (€ +7Q + B(0,h) \ (£ +7Q))
¢er, (5.3)
< Cor™ ' Y L™((E+7Q+ B(0,h)\ (€ +7Q))
¢cky

< Co1Coghr™ *#F,
Here we have finally employed the assumption h € (0, 7], from which it follows that
ﬁm((rQ + B(0,h)) \ TQ) < Cozhr™!
for some Co3 = Ca3(m). By Lemma we have #F, < Cior>~™. Hence
Ay < C91023C19h,
which gives . O
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Lemma 5.4. Let J be as in Definition and J' = vaz/l A} for Lipschitz (m — 1)-graphs {AJ}N

Then

H™2(J' NOZY)dy < Cou, (r>0),
Qo

for some Coy = Coy(J, N',m).

Proof. Let H, :=>_I",(rZe; + ei-). We observe that
JnozicJnziney+H,)c (0 |J 2¥)n(ry+ H,).
y'€Qo
Pick any y € Q. Then
U z/= U E+r/+rQ) C F+ri+rQ+[-1,1rQ = ZJ + [-1,1]rQ,
y'€Qo y'€Qo

so that setting ~ -
TP =002+ [-1,1]rQ),

gives R
JNozy cJYn(ry+ Hy).

Next we deduce for some Ca5 = Ca5(J, N',m) that

H™ T N (ZY 4 [-1,1]rQ)) < Cosr.
Qo

This can be shown analogously to Lemma minding in the step corresponding to (5.3 that

L7((J = B(0,rm)) N (£ +rQ + [-1,1]rQ)) < (3r)™.
We may therefore choose § € Qg with
HYJIY) = H NI N (ZY + [-1,1]rQ)) < Casr.

The claim of the present lemma is now established by reasoning

H2(J' NoZY)dy < | H™2JYN (ry+ H,))dy
Qo Qo

<Z/ H™2(JV N (ry + rZe; + e;)) dy

—ZZ/ H™2(JI N (r(s 4 n)e; + e;-)) ds

i=1 neZ
= Z/ H™2(JY N (rse; + ef)) ds
i=1 /R

< THTNIP) < Cosm.

(5.4)

In the first inequality we have employed ([5.4)), and in the second-to-last inequality the coarea formula.

Lemma 5.5. Let J = Ufil A; be as in Definition . Then 8.J C int MNyeao VAS

O
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Proof. First we observe that B B
dJ C int((0J —rQ)NrZ™ +rQ). (5.5)

Indeed, let & = (z1,...,2m) € 0J. For any i € {1,...,m}, if there exists z € (x; — (0,7)) N rZ, then
clearly
z; € int(z + [0,7]) C int([(&)] —rQ)NrZ™ +rQ)] )

%

Otherwise, if (x; — (0,7)) NrZ = 0, then z; € rZ. It follows that
zi € int (i — 7+ [0,7]) U (@i + [0,7])) C int([(5J Q)N TZ™ + TQL.).
We conclude that holds.
Next we observe that
(BT —rQ)NrZ™ +1rQ C (0J —2rQ) NrZ™ +ry+rQ = 7Y, (y € Qo). (5.6)
Indeed, let again = = (x1,...,zy,) satisfy = € (5J —rQ)NrZ"™ + rQ. Then
ri=rk+ra and rk=2z-—rq
for some k € Z, a € [0,1], z € dJ and q € [0,1]. We want to show that
ri=mm+ry+rb and rm=2z-—2rp
for some b € [0,1],n € Z, Z € d.J and p € [0, 1].
If @ > y, this is satisfied when b =a —y and n =k, as well as Z = z and p = ¢.
Ifa<y wepickb=1—-y4+aandn=k—1,aswellasp=(¢+1)/2 and z = 2.
We have thus shown , whence also

@] —rQ)Nrz"+rQ C () ZV.
y€Qo

Recalling (5.5) it now follows that dJ C int Nyeqo Z7- O

Lemma 5.6. Let J = Uf\il A; be as in Deﬁm’tion and J' a H™ -rectifiable set. Pickr > 0, some
yr € Qo, as well as € satisfying hy € (0,7), Define Z, .= Z}", F, := FY", and

frg = H"NOZ + H™ (T Z).

Then
Spe(pre; Go) < H™ NI\ Z,) + Coshy (5.7)

for some Cog = Cag(J) and

Ge:={I} :=0Z, N B(x, hy) | B(x, hy) intersects at most one face of Z,}.

Proof. Denote by E,.p, ({ =0,1,2,...) the points x € R™ such that B(z, hy) touches more than one
face of Z,. Then B(x,/mhy) touches more than one face of some cube & 4+ rQ, £ € F,. Consequently,

Eryg CF.+rH+ B(JJ, \/ﬁh@),
where H denotes the union of all the edges of @), of the form

{ze€Q|{e,z)=0; ek, 2z) =0k}, where i, k=1,...,m;i#k;0; €{0,1}.
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We may now calculate that
|Gtz mi do < (0 102,) (B + BO.)
ET,Z

< D (H"0Z)(E + rH + B(0, (1 + Vm)hy))
el

< #F,CogH™ 1 (r0Q N (rH + B(0,2y/mhy)))
for some Cag = Cag(m). We recall that # F=Cygr?2~™. If 2¢/mh, < r, we may thus continue to calculate
#F,CosH™ 1 (r0Q N (rH + B(0,2v/mhy))) < #F,Corr™ 2hy < Caghy

for some constants Co7 = Co7(m) and Cog = Cag(J,m). If, on the other hand, 2\/mhy > r, we may
calculate

#F,C%Hm_l(MQ N (TH + B(O, 2\/ﬁh5))) < #FTCQW‘m_l = C19Co7r < Caghy.

Thus
/ (™1 02,) (ra o) dae < Coshe. (5.8)
ET,Z

Minding the definition of p, ¢, and recalling from Definition the notation Of := supp 7, fr, we
can continue to calculate

/ inel (o o) d < / 10 OF \ OZ,| (o f) d + / (H™1L02,) (ro fo) de
Er( E»,«Z Erl
| | | (5.9)
< / 0 OF \ 02, | (7 f2) da + Coshe.
E'r',é

Let us then observe that, by the choice of I'}, since B(z, hy) for z € R™ \ E, ; intersects at most one
face of 0Z,, we have

[ a0\t de = [ uenOF \0Zi(rafi) do
Rm\Er,(Z Rm\Er,l’.
so that combining with (5.9) yields
Soulini 00 = | Nwal(rafiydo+ [ e OF \Tl(ruf) do
ET,Z Rm\ET,Z

(5.10)
< / 17,00 OF \ 92, (o o) dx + Cish.
Rm

Minding the definition of u, ¢, we get
|10 OF \ OZy| (i fo) = (H™ 1T\ Z2) (7 o).

Thus (5.7) follows from ([5.10]). O
Remark 5.2. Each I'j € G in the above lemma is clearly a Lipschitz graph that satisfies (3.13]).

6. The main approximation theorem

We now reach our main result. The space A(Q; RE) of admissible functions is defined in Definition
and the operators Ty, (¢ € F) in (4.16). We recall that the same (fixed) regular nested sequence
of functions {(fe, v)}72, with corresponding regularity constants {hs}7°, (see Definition is used
for the definition of both 7 and Sp (see Theorem and Definition respectively).
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Theorem 6.1. Suppose u € A(Q;RE). Let F be a finite collection of maps RS Cl(clQ x R™ x R™ x
Sm=1). Then there exists a sequence {u'}2, C A(Q;RE) such that each set Jul from Deﬁmtzon is
polyhedral, and

u' — u strongly in L?(Q; R™), (6.1)
Vul — Vu strongly in L*(Q; REX™), (6.2)
DIyt = DIy weakly* in M(Q; REX™), (6.3)
H" () = H (), (6.4)

Tyu' = Tyu weakly* in M(2), and (6.5)
n(Tyu') = n(Tyw), (¥ € F). (6.6)

In particular, it can be ensured that |DIu?|(Q) — |DIu|(Q) and | Div’ v*|(Q) — | Div/ u|(Q).

Proof. We divide the proof into three steps: (Step 1|) Construction of approximating sequences, (Step 2))
convergence of the preliminary approximations v, to u, and (Step 3|) convergence of the approximations

wk to the preliminary approximations v,.

Step 1: Construction of approximating sequences We let {A} *, be the Lipschitz graphs from
Definition [5.1|for u and use the shorthand notation J = .J,,. We let M, := [[wll oo (o;rx) and denote by
L the maximal Lipschitz factor of g; := ga,, (i =1,...,N). We pick r € (0,1), fixed for the moment.
We recall from Definition [5.4] that

N N
0 == |_J oA,
i=1

Fyo={€erZ™| (£ +2rQ)N8J # 0},

FY:=ry+F,, and

ZY = F/ 4+rQ.
We further let

=) 2.
y€Qo
Definition and Lemma then yield that
AiNA,CcdJCintZ, and A;NINCintZ., (i#n), (6.7)

With s, € (0,7) still to be determined, let us set (see Figure

Z,:={x € Z, | min ||z—2]>5}, and
x'€0Zy

Uir = (M \ Zy) + (=1,1)5,2;, (i=1,...,N),

and denote by U; + ~ the halves into which U;, split by A;. From the fact that A;N0Q C OA; (Definition
-. we deduce that U; , C € for small enough 5,. Moreover, we may and do choose 5, such that

H™1(0Z,NJ) =0, (as we can pick K" 2(8Z, NJ) < c0),

AN A, Cint Z,, (i #n), (minding (6.7)),
OUip \ (A +{-1,1}8,2) C Zy, (6.8)
ONNU;» =0 and
Uir V(A UUpy) =0, (i#n).
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Figure 2: Some of the construction in Theorem The dotted line represents Z« ) Zr. The dashed
line bounds Uy, and together with Ag, the sides Ugfr.

Next, we approximate the surfaces A; \ Z,. We choose a sequence {sk}%e , € (0,5,) with sF N\, 0.
Lemma then gives sequences {Aﬁr}z‘;o, (i=1,...,N), of polyhedral Lipschitz graphs of factor at
most L', satisfying

HMLAE, S 1A\ Z, weakly* in M(R™), (6.9)

vpe MR, S o HT TN\ Z, weakly® in M(R™; 5™, (6.10)
A¥, M\ Z, + B(0,s%/2), and (6.11)

(v ogﬁr|]BV(‘/i;fr;Rm) <Cy, (i=1,...,N;k=0,1,2,...), (6.12)

for some constant
Ca9 = Co9 (m?m?X(HgAiHLl(VAi;Rm) + ||VgAi||BV(VAi;Rm><z/J\‘i))) < 00
independent from 7. (We will always explicitly indicate any dependency on r.) It follows from
and U, N U, = 0 that
(A, +B(0,5, —sf)) N (AL, + B(0,5, —s))) =0, (i#nmk=0,1,2,...), (6.13)

k

Moreover, we may again split U;, \ 7, into two halves Uf;i by Af,, (k= 0,1,2,...), signs chosen

consistently with Uﬁ.
We next want to extend u from both sides of A;, to all of U;,. Indeed, Proposition [£.2] provides
extensions UZ(;[:) € Whoo(U; s RE) of u|Ufr € Wl’OO(UfT,;RK), satisfying
[ <| d ol <C 6.14
i Lo (U i RE) = UHLoo(UiiT;RK) an ||Ui7r HW1’°°(U¢,T;RK) > 17HU||W1,oo(UiiT;RK) (6.14)

for some Ci7 = C17(L, m,u). Moreover

L™(Aiy) =0 for Ay = {2 € Upy | 017 (2) = o) ()} (6.15)

2,7

Since Vyr is polyhedral and hence has Lipschitz boundary, by (6.14) and Proposition (after a

trivial rotation of the domain), vﬁ) has a trace on Aﬁr, satisfying
(#) , k ()
Hv@-,r) ° Girllwree(v,, mry < Cisllvp, lwre vy < Cso (6.16)

for some constants C15 = C15(L',m — 1) and Csg = Cs0(u, m, {A;}Y ;). From the construction of U ,
it can be easily observed that H™ 1(A; N 0U; ) = 0. Because vﬁ) € Wl"’o(Ui,T) C C(U;,), referring
to Proposition it hence follows from that

oCIH AR, S oMU 2, wealdy* in M(R™;RK). (6.17)

2,7
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The next step is to choose some ¥, € Qg with desirable properties. Let us set j,’?’ = Uf\i 1 Aﬁr and
begin by observing that Lemma provides a constant C3; = Cs;1(J, N, m, Q) such that

/ SOHTTH(TUOQ) N (ZY + B(0,2h)) \ ZY) dy < Cs1 > by, (S =00 IR ).
Qo he<r he<r

Likewise from Lemma [5.4] it follows that

/ H™2(J U NOZY)dy < Cay, (J' =J,J°, T4, J2,..).

0

for some constant Coy = Cay(J, N, m, ). Application of Fatou’s inequality with J' = jf, (k =
0,1,2,...), now gives

~ m=1((JFueN(Z¥ ; ¥
I = / lim inf <MuHm—2((Jf ua)Noazy) + Zyr ((J’“;h imﬁj FBO2ONE )> dy < Czz
0 ="

k—o0

for C39 = C31 + M, Cy4. Likewise setting J' = J gives

H™=L((JUOQ)N(ZY +B(0,2he))\ZY
L= /Q (MuHm2((Ju o) nazy) + Zme Uzh;q(hz O2hN )> dy < Cs».
0 <

It follows that
I + I, < Csg

for some constant Cs3 = Cs3(u, N) independent of r € (0,1). Consequently there is a subset CAQT C Qo
with measure £™(Q,) > 0, such that choosing any y, € Q,, and denoting F,. := F" and Z, := Z/" =
F. + r@, we have

Shy<r BT ((JUBN(Z, +B(0,2h)\Z: )

MuHm—Q((J U 89) ﬁ 8273{) + Zhégr hZ S C33, and (618)
. m=1((7k9H - , -
i < M Hm2((F* U 00) 1 07Y) 4 Zhes ((JrZu Q)m}(lZ +B(0,2h0))\Z )> . (6.19)
k—o0 hp<r 't

Let now o, € [—M,,, M,]¥ be such that
N ({z € dZ, |w(z)=on}) =0 forall w=uo v ) i=1.._ N

? T, ) T )

(The existence of «, is a consequence of the formula [, fdu = fo {f>t})dt= fo {f >t})dt
for bounded Borel f : Q — [0, M]. Here Q = 0Z,, p = H™ L)

We are then finally in the position to define the approximations

Qa, T € Zy ﬂ Q,
wi(x) = vl (2), = U\ 2,
u(x), othervvlse in Q.

We want to show that w? € A(€), and that {wF}%° | converge in a suitable sense to

o, r € Z. N,
0r () = ne
u(x), otherwise in .

Then showing that v, converges to u as r \, 0, a diagonal sequence {u’ = wff; 1205 (i \( 0, ki — 00),
will satisfy the claim of the lemma.
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Regarding the claim that w? € A(Q;RF), clearly wF € Wh*(Q\ J¥; RE) for the polyhedral set
JF = (JF\ Z,)U (02, N Q).

T

Observe also that J,x\ Z, = JENA; -\ Z,, so that, thanks to (6.15), we have Hm_l((Jf\ka)\Zr) =0.
Due to the choice of ay., also H™ 1 ((JF\ Juwr) N Zy) = 0. Together these yield

H™HIFN Jye) = 0. (6.20)

This takes care of condition ({il) of Definition (/5.1]). Condition will be shown during the course of
the convergence proof in [Step 3| The remaining conditions follow from the construction above; to force
condition , we have to break each face of 9Z, into multiple graphs by {Fﬁr}f\il. Since the graphs

I‘fr are piecewise affine, condition is retained.
b

Step 2: Convergence of v, to u  We have to show the convergences ([6.1)—(6.6]) for ut = vy, (1r; \,0).
First of all, we observe that v, has its jump set .J,,. concentrated on

Jr:=(J\ Z,)U(0Z,NQ).

By construction we have J,, \ Z, = J, \ Z, and J;\ Z, = J\ Z,. Thus by Definition [5.1|{i), H™*((J, \
Jv,) \ Zr) = 0. Due to the choice of o, we thus further obtain

H™ YT\ J,) = 0. (6.21)

Next we recall from Lemma that there are at most K, < Cigr2~™ points of ry, + rZ™ in F, for
some constant C1g = C19(J). Thus we deduce

L™(Z,) < K L™(rQ) < Cror?. (6.22)

Since v, = u on Q\ Z,, this clears the convergences v, — u strongly in L?(;R¥), and Vv, — Vu
strongly in L?(Q; RE*™) as r N\, 0. The convergence

H (o) = H ()

follows from the following two observations. Firstly H™1(J, \ J,,) = H™1(J, Nint Z,.) by construc-
tion. But H™~1(J, Nint Z,.) — 0 as 7 \, 0 by (6.22) and the (obvious) upper Ahlfors regularity of .J,,.
Secondly, H™ (Jp, \ Ju) < H™ 1(9Z,) — 0 due to the estimate

H™10Z,) < K,H™ HO(rQ)) < Cror?™™ - 2mr™ ™! = Cayr. (6.23)

Since v, = uw on 2\ Z,, and u € Lﬁu(Q;RK), we have |Tyv, — Tyu| < cyH™ 'L0Z,, where ¢y,

is the maximum of ¢ on the compact set clQ x cl B(0, M,) x cl B(0, M,) x S™~!. Minding (6.23)),

it follows that Tyv, = Tyu weakly* in M(R™), (¢ € F), and, similarly, Div, = Diu weakly* in
M(Rm, RKXm)'

We still have to show n(Tyv,) — n(Tyu) for any ¢ € F. We begin by studying n,(Tyv,) for indices
£ with h, > r. Firstly, we observe that

Tyv, (T \ Z,) = |Tyulo(J\ Z2)  and  |Tyv,|oZy < cyH™ 1 OZ,.

Thus an application of (6.23)) and Lemma yields the estimate

Ne(Typvr) < me(Typvped \ Zy) + 2|Typvr Zp[(Q) < me(Tyu) + 20y Csyr,
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and summing over hy > r gives

> me(Tyor) <Y me(Tyu) + 2¢4Cas » 7 (6.24)

]‘Lg >r hz >r hz >r

We then study n¢(Tyv,) for indices ¢ with hy < r. Letting D(z; ) == |pu|(72 fe) — |(72 fo)|, we may
write

ne(Tyvy) = D(x;T¢Ur)dx:/D(x;T¢vr) d:n+/ D(x; Tyv,) de, (6.25)
R™ A B

for A :=Z, + B(0,hy) and B := R™ \ A. The second integral we may approximate

/D(x;T¢vT)dx:/ D(x; Tyu) d:zcg/ D(x; Tyu) dx = ne(Tyu). (6.26)
B B R™

We then consider the integral over A = Z, + B(0, hy). First of all, since supp fr C B(0, hy), we deduce
that

/A D(w: Tyv,) de < ne(Tyvre (Zr + B(0, 2hy))). (6.27)

We intend to use Proposition towards which end we need to estimate Sp(Tyv,L(Z, + B(0,2hy)).
Observing that

\Typvr| (Zr + B(0,2hy)) < ey (H™ 1L 0Z, + H™ T N (Zr + B(0,2h0)) \ Z), (6.28)

it suffices to study
firg :=H" ' 0Z + H™ LT N (Zy + B(0,2h)) \ Z,.

By Lemma [5.6] we indeed have the bound
Spe(pre: Gre) < H™ (T N (Zr + B(0,2he)) \ Zy) + Coghy (6.29)

for Cog = Cag(J) and the collection

Gro:={Iy :=0Z, N B(x, hy) | B(z, hy) intersects at most one face of Z,} (6.30)
of Lipschitz graphs satisfying (3.13). An application of (6.18]) yields
> Sp(prei Gre) < Css > he (6.31)
he<r he<r

for some Cs5 = Cs5(u, J, N).
Writing
Oprotire =P (-0 v vy, YH™ N (Jy, 0 (2 + B(0,2hy))) = Tyor(Ze + B(0,2hy)),
we now have by Proposition for some constant Css = Cs6(L, m, «) that

ne(Tyvr(Zr + B(0, 2he)) < Cs6hel| 0y rellBv(G,. ) + SPe(Op i etire; Gre)

(6.32)
< Csghy S{lllI}) Z 10400 grllBv(ve) | + cySPe(tere; Gre)-
T

The supremum is taken over finite disjoint subcollections of G, ;. Recalling (6.30)), this amounts to
simply taking the sum over all the faces (see Definition of Z,.. Let us denote this collection by
V. Extending u and v by zero outside €, for them to be fully defined on all I € V., we then have to
bound

Z ||9w,r,eogl“||BV(vp) = Z [ (- v o gry vy OQF,VFOQF)HBV(VF)-
I'evy, rev,

31



Since v is C, it is Lipschitz on the compact set c1Q x cl B(0, M,,) x cl B(0, M,) x S™~!, and we may
apply the BV chain rule [3]. We thus only have to bound |[vr o gr|[gv(1) and [[viF o grllgy () for
I' € V,. Since each I € V, is a face of 9Z,., we find that vr is constant with

D llvrogrlsvin = > H™ Hor(W)) = H™ 1(02,).
eV, rev,

This is indeed bounded due to (6.23)). On the other hand, the definition v, = (1 — xz, )u+ a,r Xz, gives

Z o, o grllBv(r) + Z oy 0 grllBv) < 2M H™(02,) Z luogrlBvr)-
rev, rev, rev,

Since u € W1>°(Q\ J) and Lipschitz continuity is preserved by traces on affine sets, we may bound
luogrlpvg) < /F 0 [u(@) || + | Vu(z) || dH™(z) + 2MH™2((J U OQ) NT).
n

The latter term approximates the mass of the jump part of the differential. Summing over I' € V,. we
thus obtain

> wogrllsyg < / lu(@) || + [ Vu(@)l| dH™ (x) + 2M H™2((J U Q) N 9Z,)
Ley, 02,10
< ullwros riyH™ H(0Zy N Q) + 2MH™2((J U 0OQ) N OZ,)

< ”UHWI,OO(Q;RK)CEMLT +2Cs3, (re€(0,1)).

In the final step we have applied (6.23]) and (6.18]). Applying this in (6.32]), it now follows for some
Cs7 = Cs7(u, N, L,m, o, Q) that

(6.33)

T]g(var\_(Zr + B(0,2hy)) < Cs7hy + Cq’[,Spg(,ur’g; Gri)- (6.34)

Applying (6.31)), we may now deduce from ((6.34) for some Csg = Csg(u, J, N, L,m, «,2) that

Z ne(Tyvre(Zr + B(0, 2he)) < Css Z hy.

he<r he<r
Recalling (6.25))— (6.27)) it then follows that
Z ne(Tyvr) < Z ne(Tyu) + Css Z he,  (he <) (6.35)
he<r he<r he<r

The estimate (/6.24]) for the cases hy > r together with (6.35)) now yields

n(Typvr) < n(Tyu) + Csg Yy min{hy,r}, (¢ € F),
/=0

for some Cs9 = Cs9(u, J, N, L,ym,a,Q, F). Recalling the condition (3.1)) in the Definition of a
regular nested sequence of functions, the sum tends to zero as r ™\, 0. Since Tyv, = Tyyu and 7 is known
from Theoremto be lower-semicontinuous with respect to weak™ convergence, this gives n(Tyv,) —

n(Tyw). The proof of properties and convergence of the preliminary approximations {v, },¢(o,1) can thus
be concluded.
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Step 3: Convergence of w® to v, We now need to show that {wf}gozo approximate v, sufficiently
close to the senses 7, in that a converging diagonal sequence can be constructed.

We begin by observing that (6.11)) and the construction of the functions w” and v, yield

k k
ik = o By = [ vty lub(e) = wr(o)] da,

where £ (J 4 B(0,s¥)) — 0 as k — co. Minding that

N

k + -
1wkl 2@y < ullzammy + O (105 2w, ) + 105 2w, )
=1

is bounded, it therefore follows that w® — v, strongly in L?(€2;R¥X). Analogously we get Vw® — Vo,
strongly in L2(Q;RE*™),

Let us then fix ¢ € F. We now have to study in what sense n(TywF) approximates n(Tyv,) as
k — oo. We begin by studying n¢(Tyw?) for indices ¢ with hy < 5,/3 with the intent of applying
Proposition again. Then, observing that |Tywk| < ¢y AF for

Mo =l gk = w97, + HTNL(JRN Z),

it suffices to calculate Sp,(\F; Qﬁ ;) for some collections gﬁ , of Lipschitz graphs I'j = Ff’f yet to be

determined. We may further assume that k is large enough that

(5, — s7) > (2/3)5, > 2hy.

Asin we split the integral in (3.5)) as
Sp(AE: GF,) = /A IARLOF \ TF|(ra fo) dt + / IASLOF \ TF|(ra fo) d, (6.36)
B

for A := Z, + B(0,hy) and B := R™\ A. If z € B, then from (6.13) and (5, — s¥) > 2hy, we observe
that the ball B(x, hy) intersects at most one of the graphs A’f}r, .. ’A?V,r' If B(x, hy) intersects, say,
AﬁT, we then take

I'Y = (B(x, he) + Rzye ) NAL,.
Otherwise, if J¥ N B(x, hy) = 0, we take T'Y = (). In either case, we have J¥ N O% \ T'? = 0, so
| WOF \ T (raf) di =0, (6.37)
B

We define the collections gﬁz = {T'? |z € B}, (2he < (2/3)s, < (5, —s¥)). Each T € gffj is a Lipschitz
graph of constant at most L'(r) and satisfies (3.13)).

With regard to A = Z, + B(0, hy), an application of Lemma gives

/A IASLOF \ T%| (1, fy) di: < / AL (Z, + B(0,2h¢)) \ T2 (7, fo) d

= Spe(ML(Zy + B(0,2h)); GF ).

(6.38)

Lemma [5.6] this time gives

Spe(ML(Zr + B(0,2h¢)); Gro) < H™ ™ (JF 0 (Z, + B(0,2h¢)) \ Z,) + Cashy
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for exactly the same collections G,,, (¢ = 0,1,2,...), as in [Step 2| Setting gff’g =G U 5@, and
recalling (6.36))—(6.38)), it thus follows that

Spe(AF:GF ) < H™ N (JF N (Z, + B(0,2he)) \ Z;) + Cashy.

By application of (6.19)), we therefore obtain for some Cs5 = Cs5(u, J, N) that

im i Fgk) < : :
thI_l)})I‘}f Z SpK(Arvg'r,f) < (s Z he (6 39)

he<5-/3 he<r

It is now possible to apply Proposition [3.3| on
Twwr]? = ﬂqk/:)m)‘f = 7/](7 (w{f)Jr? (wﬁ)iv VJw’,?)XJw’ﬁ >‘7’f
This yields for some Cyg = Cyo(L’', m, ) the estimate

ne(Tywr) < Caohel| 0 llvigr ) + Spe(95,, A GEe)

(6.40)
< Cyohy <S{111€> Z H’ﬁfpﬂ« o gF’BV(Vp)) + cypSpe(Af; gf,e)-
T

The supremum is taken over finite disjoint subcollections of gff ;- Minding the construction of QT]? ¢» this
amounts to simply taking all the faces I' € V), of Z,. along with Akr for:=1,...,N. With r fixed, we

i7

thus have to bound ZFGVTU{A;CJ N ||19§M, o grllBv(vp)- With the additional help of (6.14)) and (6.19)
for estimates within Uilf;i (where w¥ = v;,.), we can similarly to (6.33) in [Step 2, bound

Z ||19§,7T ogrllsvig) < Cu = Cu(u,J,N)

rev:
As for the remaining sum over the surfaces Aﬁr, (i=1,...,N), we have
k k k\—
Z |95 © grllBv(vr) = Z (-, (W)™ o gr, (wy)~ o gr, vy @ 9r)llBv(vr)s
F:A’fﬂ,,,..,A’;w F:A’f’r,...,Aﬁ,J

since 9 is C! on the compact set clQ x cl B(0, M,,) x cl B(0, M,) x S™~!, we may again apply the BV
chain rule and only have to bound [|v; , ogr{lgy(vy) and ||(wf)Fogr|lgy(y for T =AY, (i =1,...,N;
k=0,1,2,...). Such bounds are given by the estimates (6.12)) and (6.16)). Thus

Z ”19112,7" ogrlBvir) < Caz = Caa(u,m, J).
r

We now obtain from (6.40]) for some Cy3 = Cy3(L',m, , Q, ), J) the estimate
ne(Tywr) < Cashe + cySpe(A5 Gry)-

Summing over hy < 5,/3 and recalling (6.39) and the finiteness of F yields

e k
hkrglorgfw ]:( Z ng(Td,wr)) < Cy Z he (6.41)
€

he<5-/3 he<r
for some Cyy = Cyy(u, J, N, L', m,a,Q, F). For hy > 5,/3, we have the rough bound

ne(Tywh) < [Tywh](Q) < e H™ (Jp), (€ F).
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It follows that
lim inf E n(Twwf) < Cys(r) = Cys(u, J,N, L' ,;m, a,r,Q, F),
k—oo e F

so, after passing to an unrelabelled subsequence, we have for any fixed r € (0,1) that

sup n(Tywk) < oo, (¢ € F). (6.42)
k

Next we intend to apply Lemma to show the weak* convergence of {TywF}°, to Tyv,. We
begin by deducing from (6.18)) that ™ (J N 0Z,) = 0. Thus Proposition and give

HT LR Z, 2 H™LJ\ Z, weakly* in M(R™).
As 0Z,NJ, =0Z,NJF=0Z,., (k=0,1,2,...), it follows that

HTLJE oyl g weakly* in M(R™).

Recalling (6.20)), (6.21]), we thus have
er—lLleﬁ = 'Hm_lx_JvT weakly* in M(R™).
By the convergence of {wf}zozo to v, in H?(Q), shown in the beginning of the present step, the trace

of wk on 07, converges to that of v, in L'. Therefore (6.10) and (6.17) yield analogously to the above
that

v H T e = vy, HTN, weakly® in M(R™; S™71), and (6.43)
(W) FH™ Ly = o H™ LT, weakly® in M(R™;RY). (6.44)

We may assume that F includes the functions

WY (wout uT,v) =y (for Lemma,
v (z,utum,v) e (uh); (for Lemma [1.3),
Yin (:L' ut uT,v) e [(uh —u )], and
Yy (T, v) = v =1, (G,n=1,...,m).

It now follows from (|6 7, and Lemma after possibly passing to a subsequence, unrelabelled,
that both Tywk = var and |Tywk| = [ Tpvr| in M(R™) for all 1) € F. By the inclusion of 1;,, in F,
(i,n = 1,...,m), it follows that Diw? =~ Div, as well as |D/wF|(Q) — |D7v,|(Q2). Moreover, by the
inclusion of ¢H in F, we get H™~ 1(Jwr) — H™ Y T,).

We must still study the convergence of n(Tywk) to n(Tyv,). As we have shown above that Tj,wk =

Tyvr, and |Tywk| = |Tyv,| in M(R™) it follows from Theorem that n,(Tpwk) — ne(Typvy), (£ =
0,1,2,...). By the lower-semicontinuity of n and, respectively, (6.41)), it follows that by choosing k(r)
large enough, we can ascertain the lower and upper bounds

N(Tyvr) = 2Caa Yy by < n(Typwh®) <n(Tyvy) +2Cus Y he, (¢ € F). (6.45)

he<r he<r
The sum ), . he tends to zero as 7\, 0, so n(szwf(r)) —n(Tyvy) — 0 as r 0.
Summarising, taking k(r) sufficiently large, we can thus ask that ((6.45) holds as do

Hm_l(J'U'r) -r S Hm_l(‘]wf(ﬂ) S Hm_l(‘]vr) +r
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along with
lor — wf(r)||L2(Q;RK) <r, and |Vou,— vwﬁ(r)”LQ(Q;RKXm) <r.

Metricising the weak topology on M (R™) with d*, we can also ensure that
d* (D’ vy, DIwF™)y <. and d*(T¢vr,T¢wf(r)) <r, (WeF).

Minding the preliminary approximation results of we thus obtain the desired convergences
1} for the sequence u’ := w,lfi(”) given r; N\, 0. This completes the proof. O

Remark 6.1. Provided that Sp(JU0?) is bounded, it is easy to extend the above proof to show that
if 4 (resp. ') is the extension of u (resp. u’) to R™ by zero, then the sequence {@'}2°, converges to @
in the senses . ) with Q = R™. (The important pomt is that parts of 9€) now are Contalned
in Jy.) Indeed, all we have to do is to include the graphs Fl - F%, where 002 = UZ T £ among
A1, ..., Ay in the construction of the theorem. We however do not need to cover the boundaries by
jump cubes or to approximate them by polyhedral graphs as we do approximate Aq,..., Ay. Hence
there is also no need to extend u over F?, e ,FQ (as v; ) The only thing that we need to take worry
about is the effect of the jump cubes on Sp. This is the reason why we have already included 02 in
the H™~! bounds of (6.18)) and (6.19)); doing so was not necessary for the proof above. (Including 9
in the H™~2 bounds is however necessary for bounding quantities of the form 19llBv(g,) with T'j € Gy
extending outside §2.)

7. An anisotropic variant

We next study a variant of Theorem approximating J by jump sets with the normal field al-
ways oriented along one of the the coordinate axes. We begin with necessary additional definitions,
assumptions, and lemmas.

Definition 7.1. For v € S™ ! we define the anisotropy function ¢(v) := Y.1", |{v,€;)| = ||v||1. For
H™ Lrectifiable J, we let ®(J) := [, o(vy) dH™ .

The following lemma is an analogue of Lemma

u”)p(v) for some ) €
,u) — ), and ¢sf,i :

Lemma 7.1. Let F be a finite collection of maps Y(x,ut,u™,v) = u™
U p(v
s RE) N LS (Q; RE) satisfy

CH(clQ x RE x RE). Suppose that F includes the functzons Yy

(
(z,u™
(z,ut,u™v) > uip), (i=1,...,K). Let {v,w°, v, w?, ...} C SBV(;

sup H™ 1 (J k) < o0, (7.1)
k
supn(Tyw®) < oo, (¥ € F), (7.2)
k
go(yJu,k)Hm_lL e = oWy YH™ LT, weakly* in M(Q),  and (7.3)
(wk)i@(Vka)Hmill_ka ooy, YH™ T, weakly* in M(Q; RE). (7.4)

Then, after possibly moving to an unrelabelled subsequence, we have Tyw® = Tyv and |Tywk| = |Tyv|
for ally € F.

Proof. The claim follows similarly to Lemma for the application of Reshetnyak’s continuity theo-
rem, we simply write for p,, = (wt,w™,1)p(v).J, that

F@) (@, wh,w, v)H™ Ty = flx)d(z,w,w ) pW)H™ T,
= J@iwt w0 )

[(w, w=

dit
“)lw O
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Remark 7.1. The lemma would also go through for 1 (z, u™,u™,v) = 31" iz, (u™,u™))p;(v) with
0i(v) = |(v,e;)|, provided the weak* convergence of ((w")*, (w*)~, Depi(vy, ) to (ut,u=, V)pi(vy,),
(1t =1,...,m), which actually does hold in the construction below. The reason for restricting attention
to w(z,ut,u",v) = Yi(x,uT,u")p(v) is the bound below: ¢; 0 vyr © gyr would have to have
uniformly bounded variation for a sequence of approximations {Ak}z‘;o. This does not generally hold
with A* on the faces of a tightening grid.

Theorem 7.1. Let Q=int@Q C R™. Suppo(ie u € AL RE). Let F be a finite collection of maps
Y(x,ut,u,v) = Pz, ut,u”)p(v) for some 1 € CH(clQ x RE x RE). Then there exists a sequence
{u'}2, € A(Q;RE) such that each set J,i from Definition satisfies vy (z) € {xeq,...,Lem},

(a.e. x € juz), and we have the convergences 1}1) and
B(J0) — D(Jy). (7.5)

Sketch of proof. Let {A;}X, be the graphs from Definition for u. By including in F the function

w@ : (x,u+,u_,u) = QO(V)v

Theorem yields the convergence ®(J,:) — ®(J,) for the sequence of approximations constructed
therein. Consequently, minding the construction in Theorem we may without loss of generality
assume that each of the graphs A;, (i =1,...,N) is affine.

Next we apply Theorem a second time with a small modification. By the assumption that A;, (i =
1,...,N), are affine, it is easy to construct approximating graphs Af’r such that vyr € {e1,...,em}.

As clearly vz, € {e1,...,en}, it follows that v5 € {e1,... em}.

The only problem with this kind of approximation is that we do not have the estimate (6.12)),
{Vagpr 132, not generally being bounded in the BV norm. However, since ¢ € F only depends on v

through ©(v), we do not need to bound ||vyx o gk HBV(VAk .rm), instead needing only

[0 VA, OgAf’THBV(VAk ) < Clg. (7.6)

1,7

But this is trivial, because p ov i = 1. O
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